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CHAPTER 1. INTRODUCTION 

Few economic issues have captured as much attention in recent years as the 

apparent decline in U.S. industrial competitiveness. Michael Dertouzos and the MIT 

Commission on Industrial Productivity cite at least 35 studies prepared by various 

national commissions, policy organizations, and academics, documenting industrial 

decline, uncovering its causes, and proposing remedies for U.S. industry. These 

studies have responded to widespread charges that American factories are inefficient, 

that American workers are indifferent and poorly trained, and that American 

products are inferior to those of international competitors. Motivated by the fear of 

a standard of living deteriorating under the weight of a crumbling industrial base, an 

army of researchers has investigated the causes and possible solutions to the U.S. 

industrial competitiveness dilemma. 

Most of the research and specially commissioned study groups have identified 

manufacturing as the industrial sector that has experienced the most serious erosion 

of cost and quality advantage. The signs of a long-term trend of manufacturing 

output decline are clear. While manufacturing jobs represented 38 percent of 

employment in 1960, the share had dropped to 16.9 percent in 1991. This decline 

was the result of structural changes and not cyclical swings alone. Between 1985 and 

1989, a period during which total employment expanded by 10.8 million, 

manufacturing employment grew by only 182 thousand-less than 2 percent of total 

employment growth (U.S. Bureau of Labor Statistics, Monthly Labor Review, various 
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issues). 

Slowdowns in productivity growth often have been blamed for the decline in 

manufacturing. From 1948 to 1965, multifactor productivity in the manufacturing 

sector grew at an average annual rate of 2.26 percent, slightly below the average for 

the entire business sector. Multifactor productivity growth slowed considerably from 

1965 to 1973, with an average annual growth rate of only 1.46 percent. Between 1973 

and 1979, multifactor productivity growth in manufacturing slowed again to 0.52 

percent. A considerable rebound was observed from 1979 to 1986, with a growth rate 

of about 2.53 percent. However, Baily and Chakrabarti (1988) point out that a great 

deal of this recovery was due to the computer industry. With the industry including 

computers (SIC 35) removed from the calculations, the growth in multifactor 

productivity for the remainder of the manufacturing industry was only about 1.53 

percent. Dertouzos (1989) and the MIT Commission on Industrial Productivity point 

out that much of the gain during this period resulted from industrial restructuring 

during and following the 1980-1982 recession; many inefficient plants were shut down 

with thousands of workers laid off. Baily and Chakrabarti (1988) conjectured that 

after this restructuring period, the growth of productivity in manufacturing could not 

be sustained. Manufacturing productivity in manufacturing continued to grow at a 

brisk pace through 1988, but slowed considerably between 1988 and 1990. Since 1990 

was a recession year, the extent to which manufacturing productivity growth has 

recovered from the slump of the mid-1970s will not be known until data are available 

over the entire business cycle. 
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A number of studies have attempted to explain the productivity slowdown, and 

Baily and Chakrabarti (1988) have grouped these studies into eight categories: 

education, skill and motivation of workers; capital investment; prices of energy and 

materials; statistical illusion created by measurement problems; failures of 

management; government regulatory and demand policies; and a relatively slow pace 

of iimovation. These explanations, however, address the productivity slump from 

economy or industry levels. Studies of plant data have shown that productivity levels 

and productivity growth vary widely among industries and among plants within 

industries. Baily et al. (1992) found these differences to be persistent and significant; 

aggregate productivity measures often cited are the average of a very diverse set of 

economic outcomes. This diversity suggests that there may be identifiable conditions 

under which plants are more productive. 

While much of the literature examining the performance of manufacturing has 

focused on productivity, studies in applied microeconomics and industrial 

organization often gauge the performance of industries by economic efficiency. In 

particular, allocative efficiency is the measure used most often to evaluate the 

performance of firms under differing market conditions. However, technical 

efficiency is more closely related to the measurement of total factor productivity, 

although there are important theoretical differences. As explained in the following 

pages, measuring technical efficiency provides a finer disaggregation of the 

components of economic growth than that obtainable by the calculation of total 

factor productivity. 
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Evidence from the analysis to follow suggests that the heterogeneity 

characterizing plant-level total factor productivity is also observed with respect to 

technical efficiency. This observation leads to an investigation of the characteristics 

of plants that might correlate with high or low efficiency. An important issue is 

whether inefficient plants can increase their efficiency by imitating more efficient 

plants. 

The idea that plants might benefit from efforts to improve their efficiency has 

attained general acceptance among economic policy makers, particularly at the state 

level. As of July 1988, 43 states had at least one program aimed specifically at 

developing and disseminating technology to improve productivity. In fiscal year 1988 

alone, state governments spent more than $550 miUion on such programs, including 

state-funded research centers, incubators and research parks, venture capital, research 

grants, technology transfer programs, tax incentives, and technical and managerial 

assistance (Minnesota Department of Trade and Economic Development 1988). 

Despite such widespread efforts, there is considerable uncertainty about the 

impact of technology development and application policies on the productivity of the 

targeted plants and sectors and the well-being of a state economy. While some 

evaluation of these development initiatives has been attempted, the recentness of the 

programs, the variety of their objectives and approaches, the complex relationships 

between policy and economic outcomes, the political nature of the evaluation process, 

and the limitations of firm-, plant-, and policy-specific data have limited the 

availability of careful analysis based on sound experimental methods (Feller 1988; 
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Glasmeier 1990). Considering the fiscal crisis facing many state governments, an 

evaluation of development policies is needed to guide state decisions on the funding 

and formulation of policies to accelerate economic growth and achieve development 

objectives. 

This study addresses some essential questions about the efficiency of 

manufacturing. First, what types of plants are most efficient? Identification of plant 

characteristics associated with efficiency can provide clues about the process by which 

some plants learn of and apply the more productive manufacturing techniques. 

Second, can less efficient plants become more efficient by imitating more efficient 

plants? Public policy to improve the efficiency of plants is examined as one avenue 

by which inefficient plants might leam to catch up to or overtake their more efficient 

competitors. While the empirical analysis of this study applies only to domestic 

plants, the findings contain lessons that might be germane to the debate addressing 

the competitiveness of domestic plants relative to their international rivals. 

The remainder of this chapter provides background information on the issues 

to which this study is addressed. First, tools and approaches used by policy makers to 

improve the production efficiency are described. Next, industrial extension programs 

are examined in greater depth. Because these programs often are involved directly in 

the manufacturing operations of a plant, their impact on efficiency may be readily 

observed. Finally, alternative procedures for investigating the determinants of plant 

efficiency are considered, including methods for examining the impact of public 

intervention. 
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Productivity and Technology Policy 

Policy efforts to strengthen the productivity of traditional industries and to 

expand the bases for local economies have become widespread over the past ten 

years, particularly at the state level. This section traces the history of those efforts, 

classifies the many types of initiatives and their goals, and more closely examines 

industrial extension programs as the tool with the most direct and immediate 

potential for improving manufacturing efficiency. 

Histoiy 

The role of the federal goverimient in promoting civilian innovation and 

productivity has been extremely limited. Walter Plosila (1988) points out that despite 

increased interest in international competitiveness in the 1980's, the Reagan 

Administration took a decidedly non-interventionist approach, arguing that the 

federal role in the improvement of technology and efficiency should be limited to 

funding for basic research. For this reason, most accounts of policies directed at 

improving technology and productivity focus on state programs. With the exception 

of the University Centers Program of the Economic Development Administration and 

the industrial applications centers of NASA, most federal policy for manufacturing 

productivity has emphasized deregulation and other actions supporting the view that 

the "free market will handle technology" (Plosila 1988). 

Early attempts by states to support the advance of science, technology, and 

productivity began in the 1960s and were encouraged by the estabUshment of the 
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State Technical Services (STS) program. Sponsored by the Department of 

Commerce between 1965 and 1969, the STS program provided grants with the 

purpose of improving state capacities for promoting technology transfer. The funds 

were used to establish science and technology commissions, appoint science advisors, 

and, in some cases, establish industrial extension services. Most of the established 

programs were discontinued in 1969 when federal funding ceased (Goldsmith 1990). 

Two exceptions, the New York State Science and Technology Foundation and the 

Permsylvania Technical Assistance Program, are still operating (Clarke 1990). 

The federal govenmient again encouraged state technology policy in 1977 

when Congress authorized the National Science Foundation to spend as much as 2.5 

million dollars on the State Science, Engineering, and Technology program (SSET). 

During the first phase of the program, grants were made to governors' offices to 

initiate state plans for the development of technology programs. However, follow-up 

funding was never authorized, and most of the plans were never implemented (Clarke 

1990). 

A period of accelerated growth of state programs focusing on industrial 

productivity and technology began during the late 1970s and continued through the 

mid-1980s. Increased state activism in economic development policy during this 

period occurred as a response to two important developments. First, the federal 

government severely curtailed its economic development activities targeted to states 

and local areas (John 1988). Second, the need for industrial restructuring became 

evident to many states during the recession of 1981-82. Casual observation of the 
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success of states such as Massachusetts, California, and North Carolina promoted the 

popularity of technology development and application policies and the nurturing of 

technology-based businesses. Technology and productivity initiatives developed in the 

1980s have been almost exclusively state-funded. 

Approaches to Efficiency and Improved Productivity 

In response to the proliferation of state technology and productivity policies, a 

number of studies have described, classified, and catalogued the initiatives that have 

recently been developed (Jones 1986; Minnesota Department of Trade and Economic 

Development 1988; Clarke and Dobson 1989; Rees and Lewington 1990). These 

descriptions are convenient syntheses for use in discussing alternative approaches to 

improving efficiency and productivity. 

State technology initiatives generally affect the operation of client firms in one 

of three ways: by introducing the firm to information about best-practice technology, 

thereby enabling the firm to achieve a higher level of efficiency; by taking advantage 

of agglomeration economies or economies of scale that exist in some types of 

manufacturing; and indirectly, by shifting the frontier production function, thereby 

increasing the highest attainable level of productivity. Many programs, because they 

provide more than one service, fall into more than one of these categories. Much of 

the descriptive material from this section is synthesized from Clarke (1990) and 

Minnesota Department of Trade and Economic Development (1988). 
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Programs Designed to Increase Firm Efficiency and Productivity 

Programs for technology transfer, manufacturing extension, worker training, 

and technical and managerial assistance all contribute to the information set upon 

which the manager of a firm bases production decisions. Given the existence of a 

best-practice technology, firms may be technically inefficient if they lack information 

about that technology or its application. Information systems, machinery and 

production processes, input or output inventory management, and labor or financial 

management practices all contribute to the efficiency of a manufacturing plant. 

Technology transfer programs generally are associated with a university or a 

national laboratory and are designed to speed the transfer of new technologies from 

the laboratory to the private sector. States endeavor to provide a competitive edge to 

citizen firms by giving them access to the most efficient technology in the industry. 

This effort may include awarding exclusive license to irmovative technologies. 

Management assistance programs provide firms with a wide variety of 

information, including help in locating venture capital, developing a business plan, 

applying for Small Business Administration grants, etc. This type of information 

contributes to the firm's ability to manage resources more efficiently. 

Technical assistance programs focus specifically on the problems managers 

face in adopting a technology for commercial use. These efforts might include 

assisting firms with evaluation of the probable economic impact of a new technology, 

testing the technical specifications of new products, or tailoring information systems 

to user needs. Worker training programs often are combined with technical 
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assistance or technology transfer to smooth the process of adjustment to new 

technology. 

Manufacturing or industrial extension programs help existing manufacturers 

adopt technologies to improve their productivity and quality. These programs often 

combine technical assistance, managerial assistance, worker training, and even 

location of capital sources into a single program, which often is operated by state 

extension agents who visit firms to assess their operations and provide advice about 

upgrading the firm's manufacturing processes and managerial practices. 

Programs to Capture Agglomeration Economies or Economies of Scale 

Many empirical studies have suggested the importance of agglomeration 

economies or economies of scale in a number of manufacturing industries, especially 

those in which the technology for products or processes changes rapidly. The physical 

location of engineers, researchers, and managers to others studying the same 

problems often promotes the flow of information. Furthermore, a specialized, 

experienced labor force may be an important benefit of locating near other 

establishments similarly engaged. 

Research parks are planned groupings of technology companies, often near 

universities, that encourage university/private partnerships. They often provide 

incubator services or other facilities encouraging the development of new businesses. 

Research parks and incubators both attempt to take advantage of the cumulative 

affects of the development of a market for high-technology inputs. The primary 
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function of incubators, however, is to correct failures in the capital market. 

Programs Designed to Shift the Frontier Production Function 

State-funded research centers and research grants are designed primarily to 

advance scientific knowledge. By increasing the level of scientific knowledge, these 

programs are designed to create the potential for dramatic increases in productivity at 

the firm or plant level. However, the economic returns to scientific research are 

difficult to appropriate fully to the sponsoring state. The cumulative nature of 

technology development and the difficulty of establishing intellectual property rights 

for general scientific knowledge prevent guarantees that only citizen firms will benefit 

from the resulting technology. This difficulty impairs the process of determining 

economic returns from research. In order to increase appropriability, many programs 

that fund research centers and research grants are increasing their emphasis on 

technology transfer and commercial applications. 

There are two types of programs that fall into this functional category. 

Research centers, also known as advanced technology centers or centers of 

excellence, usually are located in or affiliated with universities. They conduct basic 

or applied research and, while technology transfer may be an important component of 

their overall mission, their activity typically concentrates on technology development. 

Thus, their main contribution to changes in the economy is to advance best-practice 

technology. Research grants usually are made to individuals in universities working 

on scientific problems. Often, these projects are cosponsored by or jointly researched 
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Other Programs 

Two other types of programs attempt indirectly to improve productivity and 

efficiency. Tax policy programs provide tax deductions or credits to firms for 

conducting research and development, hiring technical workers, or donating technical 

equipment to universities. Pohcy development programs consider technology policy 

or provide science and technology advice for the governor. These include technology 

task forces, advisory boards, science and technology agencies, or individual science 

advisors. 

A Closer Examination of Manufacturing Extension 

Of those described, the programs most likely to have a direct and immediate 

impact on the efficiency and productivity of manufacturing plants are technology 

transfer, manufacturing extension, worker training, technical assistance, and 

managerial assistance. Because most of these functions are performed by industrial 

or manufacturing extension programs, and because several manufacturing extension 

programs have been in place for many years, this study focuses on these programs 

and their impact on efficiency, rather than attempting to evaluate programs that are 

less directly involved with the manufacturing process itself. The evaluation procedure 

focuses on plant-level responses to policy, and is well suited to the type of plant-level 

intervention typically provided by manufacturing extension services. 
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Table 1 lists industrial extension programs operating in the United States, as 

surveyed by the National Governors' Association (Clarke and Dobson 1989). This 

survey identified 43 programs in 28 states. Most of these programs have been 

established since 1980, and almost one-half of the programs are administered by 

universities. The remainder are administered by state agencies, quasi-public 

organizations, community colleges, or private nonprofit organizations. The staffs of 

these organizations are usually engineers with industrial experience, often university 

faculty or graduate students, who provide technology assistance to small and medium-

sized manufacturers. Direct services may include: 

• Review of current or proposed manufacturing methods and processes; 

• Productivity and quality assessments; 

• Assistance with plant layout and operations; 

• Advice on acquisition and implementation of equipment, especially 

computer systems; 

• Assistance with total quality management programs, including statistical 

process control (SPC); 

• Access to databases and other information resources; and 

• Networking. 

Indirect services (i.e., those for which referrals are made to other providers) often 

include technical data, research and development, and training. Further details 

regarding program characteristics can be found in Clarke and Dobson (1991). 
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Table 1. State supported industrial extension programs 

Year 
State Program Established 

Alabama Alabama Productivity Center 1986 
Industrial Modernization Program 1988 

Arkansas Center for Technology Transfer 1984 

Connecticut Technology Assistance Center 1984 

Georgia Industrial Extension Service 1956 

Illinois Center for Advanced Manufacturing and 1987 
Production 

Indiana Manufacturing Technology Service 1986 
Technology Assistance Program 1989 

Iowa Center for Industrial Research and Service 1963 

Kansas Center for Technology Transfer 1988 
Industrial Liaison Program 1990 
Mid-America Manufacturing Technology Center 1991 

Kentuclgr BRADD/Technical Assistance Program 1990 
Center for Robotics and Manufacturing Systems 1987 
GRADD/Industrial Extension Engineering 1987 
Program 

Maryland Technology Extension Service 1984 

Maine Center for Technology Transfer 1988 

Massachusetts Center for Applied Technology 1987 
Industrial Services Program 1984 

Michigan Industrial Technology Institute 1981 

Minnesota Minnesota Project Outreach 1989 
Minnesota Technology Inc. 1991 

Missouri Center for Technology Transfer and Economic 1987 
Development 

Montana University Technical Assistance Program 1986 
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Table 1. (continued) 

State Program 
Year 
Established 

Nebraska Technical Assistance Center 1985 

New Jersey Technology Extension Centers 1986 

New York Industrial Effectiveness Program 
Industrial Technology Extension Service 
Northeast Manufacturing Technology Center 

1987 
1990 
1989 

North 
Carolina 

Industrial Extension Service 1955 

North Dakota Center for Innovation and Business Development 1984 

Ohio Great Lakes Manufacturing Technology Center 
Institute of Advanced Manufacturing Sciences 
Ohio Technology Transfer Organization 

1989 
1982 
1979 

Oklahoma Rural Enterprises 1980 

Pennsylvania Industrial Resource Centers 
Technology Assistance Program 

1988 
1965 

South 
Carolina 

Southeast Manufacturing Technology Center 1989 

Tennessee Center for Industrial Services 1963 

Texas Technology and Business Development -
Technical Assistance Program 

1986 

Virginia Manufacturing Action Program 
Technology Transfer Program 

1991 
1984 

West Virginia Center for Education and Research with Industry 1984 

Source: Clarke and Dobson, 1991 and author's inquiries. 
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Study Methodology 

Studies of the effects of interventions or events on the performance of an 

industry or firm are common in the industrial organization literature. This study falls 

in this category to the extent that it examines the influence of plant characteristics-

including the presence of government intervention-on the performance of a 

manufacturing plants. In this section, two choices for the design of the study are 

discussed: the choice of a performance variable and the choice of industry. 

In the past, evaluations of government interventions to improve manufacturing 

productivity have lacked a well defined procedure. Because such evaluations of 

publicly funded activities have important poUtical implications, careful evaluation may 

not be the intent of the researcher (Feller 1988). However, even when it is the 

intention of the investigator to assess results objectively, it is often difficult to apply a 

sound experimental procedure to the evaluation. The relationships that technology 

initiatives seek to affect are extremely complex, and claims of causality between 

programs and macroeconomic outcomes, even when an association is found, are 

difficult to justify (Feller 1988). Furthermore, many evaluations are conducted after 

the first few years of program operation, and linkages between the programs and 

their objectives are likely to be formed over a period of time longer than most 

legislative planning horizons. 

In this study, the relationship between the program goals and the performance 

measure is simplified considerably. Rather than trying to credit productivity 

programs with expanded income or employment, the direct impact of the programs 
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on the efficiency of plants is examined. The objective is to bring the performance 

variable to the same level (plant) at which the program operates in order to sharpen 

the focus of the evaluation. 

Choice of Performance Variable 

Recent studies of the impact of events or interventions on plant performance 

have used both technical efficiency and total factor productivity as performance 

variables. For example, Lichtenberg and Siegel (1987) used total factor productivity 

as the basis for evaluating the impact of ownership changes on plant performance. 

Olley and Fakes (1992) used total factor productivity to examine the impact of the 

divestiture of AT&T on the U.S. telecommunications equipment industry. In an early 

application of technical efficiency analysis, Chames, Cooper, and Rhodes (1978) 

evaluated the impact on efficiency of an experiment in public education. Schmidt 

and Sickles (1984) examined the impact of airline deregulation on technical 

efficiency, and Sickles and Streitwieser (1991) examined technical efficiency as a 

performance variable in the effect of deregulation in the natural gas industry. 

The decision to use either total factor productivity or technical efficiency 

depends on exactly what is to be measured. The relationship between total factor 

productivity and technical efficiency, as well as the importance of technical efficiency 

in the investigation of economic growth and productivity, is well illustrated by the 

work of Robert Solow (1957). Solow separated economic growth into two 

components: that due to increases in inputs and that due to technical change. 
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Technical change frequently has been used synonymously with total factor 

productivity growth, which is the share-weighted sum of the rates of growth of output, 

minus the share-weighted sum of the growth of inputs (often referred to as the Solow 

residual). However, equating technical change with total factor productivity growth 

implies that all production units lie on the production frontier at all times. By 

dropping this assumption, increases in total factor productivity can be separated into 

shifts in the frontier, or best-practice, production function, and in individual firm 

advancement toward the frontier. Solow could have separated economic growth into 

three, rather than two, components: growth in inputs, shifts in the production 

function, and movement of firms toward the efficient production frontier. 

Hence, technical efficiency is a component of total factor productivity growth 

that does not include output changes accountable to shifts in the production frontier. 

This is because, rather than being measured as share-weighted output growth minus 

share-weighted input growth, technical efficiency measures the distance a particular 

plant lies from the best practice frontier, wherever that frontier may lie. Technical 

efficiency is particularly relevant to this analysis for two reasons. First, the 

performance of a plant relative to other plants in the industry is of primary interest, 

and second, because the specific focus of the competitiveness debate is the ability of 

firms to catch up to some established "best-practice" technology, whether it be 

domestic or international. Hence, it is important that shifts in the frontier not be 

confused with movements of plants toward the frontier. 

It can also be argued that technical efficiency is a performance variable that 
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parallels the goals of the state industrial extension programs. The preceding 

classification of state technology programs emphasized the fact that while some 

programs are aimed specifically at shifting the frontier (research grants, university 

research centers, etc), others aim particularly to promote the use of best-practice 

technology. Figure 1 shows the distinction between these two objectives. 

Manufacturing extension services provide assistance for migration of plants from 

inside the established production possibilities frontier to the boundary. Since 

technical efficiency measures the distance a plant lies from the established frontier, it 

is a particularly appropriate tool for this analysis. 

Research centers' 
goals 

Manufacturing 
extension goals 

Figure 1. Objectives of manufacturing extension versus technology advancement 
policies 
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Choice of Industiy-The Machine Tool Industiy 

The machine tool industry is composed of two four-digit Standard Industrial 

Classification (SIC) codes: 3541 (metal-cutting machine tools) and 3542 (metal-

forming machine tools). These industries were chosen for several reasons. First, the 

machine tool industry has suffered from severe import penetration, as well as failure 

to develop an export market. Second, machine tools hold a critical and strategic 

position in the competitiveness and productivity of manufacturing overall. Finally, 

industrial decline has prompted several other studies of the industry, which provide a 

useful background for the present plant-level analysis, which utilizes data not 

available to date for the investigation of efficiency. 

Industrial Decline and Import Penetration 

Table 2 provides an overall picture of decline in the machine tool industry. 

The number of plants has fallen dramatically since 1963, as has total employment in 

the industry. Imports as a percentage of domestic consumption climbed from 4.7 

percent in 1963 to 32.1 percent in 1987, giving an indication that industrial decline is 

due to loss of market share to imports. The MIT Commission on Industrial 

Productivity (March 1989) cited one important reason for this decline. The quality of 

machine tools has a direct bearing on the quality of the components built with them, 

and downstream manufacturers often have rejected U.S.-manufactured machine tools 

as inferior or inefficient, compared to foreign-manufactured machine tools. 
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Table 2. Economic trends in the machine tool industry 

Year 
Total 

Plants 

Mail 
Cases:5+ 

Empl." 
Total 

Employ. 

Value of 
Shipments 
(Millions) 

Exports 
(Millions) 

Imports 
(Millions) 

Domestic 
Consum. 

Exports 
Pet. of 

Shipments 

Imports 
Pet of 

Consum. 

1963 1,153 768 82,515 946 185 38 799 19.6 4.8 

1967 1,220 818 114,998 1,826 225 178 1,779 12.3 10.0 

1972 1,239 798 73,681 1,269 260 114 1,123 20.5 10.2 

1977 1,334 617 79,441 2,453 452 401 2,402 18.4 16.7 

1982 1,386 610 73,806 3,805 615 1,218 4,408 16.2 27.6 

1987 624 597 45,395 4,586 1,011 1,689 5,264 22.0 32.1 

"Number of plants with five or greater employees that are not administrative records cases. For details regarding the impact of 
administrative records on aggregate data, see the appendix. 

Source: Number of plants and total employment come from the Longtudinal Research Database. Employment numbers are based 
on mail cases with five or more employees. Shipments and trade data are from the U.S. Industrial Outlook, U.S. Department of Commerce 
International Trade Administration, various Issues. 
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Strategic Importance 

Machine tools are used in the transformation of metal into components that 

are then assembled either into end products or into capital goods that manufacture 

end products. The largest consumer of machine tools in 1991 was the automobile 

industry. Aerospace, construction and farm machinery, and specialized industrial 

machinery also are important users of machine tools (U.S. Department of Commerce, 

Industrial Outlook 1991). Almost every manufactured product has, at some point in 

the production process, involved machine tools. Direct access to the most efficient 

machine tools is important for domestic competitiveness in manufacturing. 

There is evidence to suggest that the development of an efficient domestic 

machine tool industry may be required to secure access to the best and most efficient 

tools. American automobile manufacturers, attempting to buy the most efficient and 

accurate machine tools from foreign builders, often have found that their access to 

state-of-the-art tools lags access by their competitors by several years (March 1989). 

While it would seem impossible for this to occur in a perfectly competitive machine 

tool market, under less than perfectly competitive conditions, firms may engage in 

strategies that fall under the category "raising rivals' costs" (Krattenmaker and Salop 

1986; Salop and Scheffinan 1984). For example, an agreement between Japanese 

machine tool builders and Japanese automobile producers that restricts the supply of 

the most innovative machine tools to American manufacturers can act to raise 

American manufacturers' costs. In the tradition of Japanese Kieretsu, this seems a 

realistic scenario. Krattenmaker and Salop note that this strategy will work only if 
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the rival cannot enter into a mutually profitable arrangement with substitute suppliers 

to restore its competitiveness. That is, if U.S. manufacturers cannot obtain leading-

edge technology tools from American, German, Korean, or other machine tool 

manufacturers, then the Japanese may succeed in decreasing relative efficiency and 

raising the relative production costs of U.S. machine tool users. 

Decline of the machine tool industry has precipitated research into its causes. 

A comprehensive analysis by the MIT Commission on Industrial Productivity (March 

1989) has pointed to the lack of technical assistance for small and medium sized 

manufacturers as a barrier to innovation. Technical assistance of the type provided 

by industrial extension programs was recommended as a method for disseminating 

information about the comparative performance of new equipment and for 

encouraging builders to invest in new technology. This study builds upon that work 

by assessing the technical efficiency of the machine tool industry, by investigating 

relationships between efficiency and plant characteristics, and by evaluating the 

effectiveness of industrial extension programs in filling the need for information. 

Procedures 

In Chapter 2, the theoretical foundations of technical efficiency measurement 

are presented, and approaches to explaining variations in technical efficiency among 

plants are discussed. Hypotheses for the study are developed from the theoretical 

discussion and from the results of other empirical studies of manufacturing 

productivity. Chapter 3 describes the development of the data used for the study. 
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The Longitudinal Research Database (LRD) is a unique and rich plant level data 

source that is particularly suited to efficiency measurement and intervention analysis. 

Chapter 4 reviews different approaches to technical efficiency measurement, and 

describes the estimation procedures used in this study. Chapter 5 contains 

preliminary results, including specification test results, estimates of the frontier 

technologies, and an overview of the estimated efficiency scores by year and industry. 

Chapter 6 uses the estimated efficiency scores to investigate the relationship between 

technical efficiency and plant characteristics. In Chapter 7, subsets of the main data 

are used to address several issues: technological change in the machine tool industry, 

the relationship between technology adoption and technical efficiency, and the 

association between technical efficiency and direct intervention by manufacturing 

extension. Chapter 8 summarizes and concludes. 
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CHAPTER 2. THEORY 

The use of technical efficiency as a performance measure is somewhat 

unorthodox among assessments of industrial performance. This is partially due to 

unavailability of models and empirical results explaining how and why plants might 

operate inside the best practice production frontier. In this chapter, the definition of 

technical efficiency is estabhshed, and it is contrasted with allocative efficiency, which 

is the efficiency concept most often applied to the analysis of firm and industry 

performance. A discussion of the neoclassical view of technical efficiency estabUshes 

its status as a measurement tool, rather than a theory that might explain the 

differences in performance between firms. A brief review of alternatives to 

neoclassical assumptions of firm behavior leads to a discussion of the possible sources 

of estimated technical efficiency (or mefficiency). The impact of efficiency on the 

growth and survival of plants and on the competitiveness of industries is then 

discussed. The discussion is summarized as a set of hypotheses for the analysis of 

technical efficiency in the machine tool industry. 

Technical Efficiency Analysis 

In a presentation to the Royal Statistical Society in 1957, M.J. Farrell 

proposed a method for measuring efficiency in production. His work was motivated 

not only by the relevance of productive efficiency in the debate over economic policy, 

but also by the weaknesses of productivity measures that were in use at the time. 
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Labor productivity, a popular efficiency indicator, did not account for the other 

factors of production, and efficiency indexes such as total factor productivity posed 

typical and highly technical index number problems. Farrell's development of 

technical efficiency was a response to what he saw as an important tool that had not 

yet been properly developed. 

Defining Technical Efficiency 

Intuitively, technical efficiency is the degree to which the greatest amount of 

output possible is produced from a given input vector, or equivalently, the degree to 

which as few inputs as possible are used to produce a given output level. A more 

formal definition is given by Lovell and Schmidt (1987) and their exposition is closely 

followed in this presentation. Let L(u) represent the subset of all input vectors x that 

can produce at least the output vector u. Using the input correspondence L(u), the 

isoquant and efficient subset of the isoquant are defined as 

Isoq Uu) = {x:x e L(u), Xx $ L(u), X e [0,1)}, m ^ 0, (2-1) 

and 

Ejf Uu) = be:X E Uu), y ^ x -* y $ L(u)), u^O. (2-2) 

where A is a scalar by which all elements of x are increased. A given input vector x 

is technically efficient if it lies on the efficient subset of the isoquant. Placement of x 

on the efficient subset requires that if any elements of a point y are smaller than 

their corresponding elements in x, and no elements of y are larger than x, then if y 
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lies in L(u), x cannot be on the efficient subset. Figure 2 shows the efficient subset 

as the thick part of the isoquant, which extends from t to s. Notice that a point such 

as Xg is not on the efficient subset because point u has one element smaller than x, 

but is still in L(u). 

Figure 2 demonstrates how Farrell measured efficiency and decomposed it into 

technical efficiency, F(x,u), and allocative efficiency, A(x,u). Given the input price 

vector S), production at point y minimizes cost. Production at a point such as x^ is 

technically inefficient because it lies to the right of the frontier. A radial contraction 

of all inputs from meets the frontier at point A-x^, at which production of u is 

accomplished in the same input proportions as at point x^. Technical efficiency equal 

to X: the ratio of the vector of inputs used at to that used at x^. 

L(u) 

WX1 

Farrell decomposition of deviations from minimum cost into allocative 
efficiency and technical efficiency 
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While production at Axj is technically efficient, it is allocatively inefficient 

because it uses inputs in the "incorrect" proportions, given relative input prices. 

Allocative efficiency is the ratio of inputs used at point c, which lies on the same 

isocost line as the minimum cost production point (y), and Ax^. These efficiency 

measures, defined relative to the point x^ have a convenient cost interpretation. If y 

represents the least cost combination of inputs for the production of u, the cost of 

production at y is S)y. Technical efficiency is 8)(Xxi)/S)Xi = k, and allocative 

efficiency is &y/2)Ax^. 

It is instructive to note that the issue of optimal scale is not addressed in this 

framework. Because efficiency is defined in terms of the input requirements for a 

given level of output, scale can be non-optimal, but the firm can still be technically 

and allocatively efficient. Only cost minimization is required for both of these 

efficiencies to hold. If technical efficiency is defined in terms of the production 

possibilities set, then technical and allocative efficiency require optimal scale, because 

the profit function is the value dual to the production possibilities set (Lovell and 

Schmidt 1988). 

An equivalent way to represent technology and technical efficiency can be 

derived from the output correspondence P(x), representing the subset of all output 

vectors obtainable firom input vector x. There is an inverse relationship between the 

input correspondence and the output correspondence. Isoquants and efficient subsets 

can therefore be defined in terms of the output correspondence: 
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Isoq P(x) = {m:« G P{x), Xu $ P{x), À > 1}, % k 0, (2-3) 

and 

Eff P(x) = {u:u € P(x), V ^ M — V € Pix)}, % ^ 0. (2-4) 

Figure 3 illustrates the concept of technical efficiency using the output 

correspondence. For a given input vector x, the efficient output vector is y, at point 

A. Point B represents a plant operating with the same input vector, but with outputs 

that have been scaled back by y. The technical efficiency score for the plant 

operating at B is yy/y = y. 

P(X> 

»Y 

Xi X 

Figure 3. Technical efficiency defined in terms of the output correspondence. 
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Once again, the issue of scale and efficiency is not addressed. A plant that is 

the "wrong" size to attain maximum productivity is therefore measured as inefficient 

only to the extent that its falls short of the estimated output attainable in a plant of 

its own scale. 

Sources of Technical Inefficiency 

As defined above, technical efficiency is observed when plants differ with 

respect to their effectiveness in combining resources to attain the maximum level of 

output. Casual observation of the production process leads to an extensive list of 

reasons for these differences. This list might begin with obvious factors, such as the 

abilities of managers and the skills and attitudes of workers. In order to derive 

testable hypotheses for a study of plant performance, these observations must be 

organized and explained in terms of a theory of the firm. While neoclassical theory 

assigns a rather impotent interpretation to technical efficiency ~ that it can be 

explained completely by errors in specifying the production decision -- alternative 

theories allow for heterogeneity in the objectives and organization of firms that might 

cause technical inefficiency in the industry. 

After discussing the neoclassical interpretation of technical efficiency, 

alternative theories of firm behavior are explored. In particular, theories that relax 

the assumption of cost minimizing or profit maximizing behavior, perfect information, 

and the idea of the firm as a single entrepreneur are explored. 
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Neoclassical Economics and Technical Efficiency 

As described by Farrell in 1957, technical efficiency was primarily an empirical 

construct. Farrell was essentially interested in solving a measurement problem, 

rather than developing a theory. He did warn that his measure of technical efficiency 

must be interpreted in relation to a given set of firms, for a given set of factors 

measured in a specific way. Farrell demonstrated the sensitivity of the method to the 

specification of the production function by showing that as more factors of production 

were added to the specification, the level of inefficiency declined. He acknowledged 

that apparent differences in efficiency may reflect factors like climate, location, and 

fertility that were not included in the analysis. However, he did assert that perfection 

of the technique, including measurement of all of the relevant variables, would lead 

to what he called "genuine" differences in efficiency. These "genuine" differences 

were attributable by Farrell to variations in the entrepreneurial ability of managers. 

From the neoclassical view, technical inefficiency is inconsistent with 

maximizing behavior (Stigler 1976). The "genuine" differences in production 

efficiency referred to by Farrell are simply artifacts of failure to measure differences 

in entrepreneurial ability as a factor of production that the entrepreneur chooses just as 

he chooses the combination of capital and labor. Consider two farmers spending the 

same amount of time applying identical inputs to the same size and quaUty of land. 

Suppose one farmer elects to learn of the most innovative methods of crop rotation, 

fertilizer application, harvesting methods, etc., while the other chooses not to do so. 

He spends this time pursuing other activities, and his choice is guided by utility 
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maximization. Although the first farmer might produce a higher level of output from 

a given set of physical inputs, the time that he spent acquiring knowledge that was 

apphed to the production process must also be considered in the production function. 

If this production function specification does not include the cost of knowledge 

production, then the second farmer has chosen a lower production frontier, because 

the opportunity cost of learning to reach the first farmer's frontier is higher than the 

value of the additional output. If the farmer's objective is to reach the same frontier 

as the first farmer, he can do so, even if his ability to comprehend and apply the 

knowledge is limited. With the value of the extra output to be earned, he can hire 

someone with technological ability (like the first farmer, for example) and pay him 

accordingly. Hence, observation of "inefficiency" is simply due to failure to allocate 

the foregone output correctly to the factors of production. This interpretation 

reduces the measurement of technical efficiency to a theoretically vacuous exercise of 

finding the residual effects of these failures. 

Even from a neoclassical perspective, however, there is value in learning what 

factors are responsible for observed inefficiency and what their magnitudes might be. 

If the goals of society include the redistribution of resources toward improving the 

efficiency of production, then learning how and why production choices are made can 

facilitate the development of policies that provide incentives for producers to move 

toward this goal. For example, suppose it is possible to measure every physical input 

of the production function perfectly, and therefore to know that observed technical 

inefficiency is due completely to differences in the ability of managers to implement a 
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given production technology. Neoclassical theory implies that the producer has 

chosen not to allocate resources to improving his technical knowledge, given the 

opportunity cost of acquiring that knowledge. Analyzing patterns of efficiency and 

the characteristics of firms can provide evidence as to which firms face higher 

opportunity costs of acquiring information. 

These differences in cost are due to failure in the market for information. 

Such failures might define appropriate roles for public policy. For example, 

correcting the information market failure by equalizing the cost of information to all 

producers might be successful in altering the entrepreneurs' decisions about resource 

allocation. An example of a method for correcting this market failure might include 

an effective technology transfer system. 

Alternative Theories of the Firm and Technical Efficiency 

Neoclassical economic theory does not fully explain firm behavior and 

organization. In particular, it models firm behavior similarly to consumer behavior. 

Clearly, firm behavior is not the result of individual choice, but of a complex joint 

decision process within a network of agency relationships (Holmstrom and Tirole 

1989). Neoclassical economics fails to explain how production is organized within the 

firm, how conflict between constituencies is resolved, how profit maximization, if that 

is the goal of the firm, is achieved, and, most fundamentally, what a firm is and why 

it exists (Hart 1990; Williamson 1991). 

These four issues have been addressed by a diverse group of economists and 
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organizational theorists from a number of different perspectives. Attacks on 

neoclassical theories of firm behavior generally originate with a repudiation of one of 

three key assumptions: that profit is maximized or cost is minimized; that 

information is perfect or can be represented by a probability distribution of future 

events; and that the firm acts as an individual entrepreneur (Cyert and March 1963; 

Williamson 1991). Violation of each of these assumptions and its implications for 

technical efficiency analysis are examined below. 

Deviations from Profit Maximizing/Cost Minimizing Behavior 

The assumption that profit maximization or cost minimization is a realistic 

objective function for the firm is easily challenged. Even if the notion that firm 

behavior can be represented by the choices of a single entrepreneur is accepted, 

utility maximization by that entrepreneur might not imply either profit maximization 

or cost minimization. The entrepreneur's utility function might include, for example, 

leisure, work satisfaction, or ability to provide employment for family and friends. 

Furthermore, even if the profit function is the correct variable to measure, 

maximization might not be the correct behavioral assumption. Firms might be 

characterized as "satisficing" rather than maximizing agents (Cyert and March 1963). 

That is, they might make decisions based on some minimum acceptable level of 

profit. This behavior might be especially common in the case of publicly held 

companies in which the availability of capital is contingent upon turning a profit that 

will attract investors. This also could be true, however, in the case of an owner 
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entrepreneur who is aware of his opportunity cost of operating the firm. If he can 

make enough profit to justify operating the business, rather than engaging in an 

alternative profession, then that may be "good enough." In the machine tool industry, 

evidence of satisficing behavior is cited by March (1989) as a reason for the failure of 

small, family owned firms to innovate and invest in new product development. 

If not all firms minimize costs or maximize profits, then differences in the 

objective functions of firms might lead to observed technical inefficiency. A plant 

that is operated strictly for profit is likely to be more efficient than one that is 

maximizing the leisure of the entrepreneur subject to some minimum level of profit, 

unless the profit constraint is equal to the maximum. Since these differences in the 

objective functions of plants are not modeled in the production function, they will be 

manifested in the estimates of technical "inefficiency." Since there is no way to 

observe what the objective function of the firm is, these sources of inefficiency cannot 

be separated from other sources. 

Imperfect Information 

Two commonly cited sources of observed efficiency differences are the rate at 

which innovations are adopted (Baily 1988; Munnell 1990) and the lag between 

adoption and efficient use of the technology (Bartel and lichtenberg, 1987; 

Kokkelenberg and Nguyen, 1989). Both the rate of adoption and the rate of 

adjustment vary among firms according to particular firm characteristics, and many of 

these are related to the way in which economic agents receive, process and interpret 
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information. If information about the production process is perfect and symmetric, 

plant managers are simultaneously aware of the best practice technology, and are 

equally able to implement it. When the assumption of perfect and symmetric 

information is relaxed, a number of sources of technical inefficiency emerge. In 

particular, information asymmetries affect both the rate at which a new iimovation is 

adopted and the lag between adoption and efficient use of the new technology. 

Many models of diffusion describe the adoption decision as a function of 

optimization over time. An important point to remember about the application of 

technical efficiency in this context is that the outputs and inputs are compared to 

production in the present time period. Hence, when resources that are expended in 

one period and the returns are accrued over time, technical efficiency measures may 

be misleading. For example, a worker training program is an expenditure of capital 

and labor that may increase efficiency over a number of production periods. In the 

period in which resources are expended for training, efficiency will appear artificially 

low, while efficiency in the later periods will appear artificially high. Investment in 

capital equipment is generally not subject to this bias, since it is depreciated over a 

number of years. However, the age of existing capital can influence the decision to 

delay an adoption (Cabe 1989); furthermore, the time that is required to adjust to 

new capital equipment may put downward bias on the efficiency estimates. 

Information acquisition. Many models of innovation diffusion suggest that 

communication is an important factor in the process of diffusion (Cabe 1989). For an 

agent to have knowledge upon which to act, information regarding the innovation 
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must have been received and incorporated into the agent's beliefs. Information about 

an innovation is communicated in a number of ways, for example, contact with prior 

adopters, advertisement, or government efforts to communicate the attributes of the 

innovations (Cabe 1990). The probability of contact with prior adopters increases 

with the level of interaction an agent has with others in the same business. 

Agglomeration economies. Contact with prior adopters is one source of 

agglomeration economies (Calem and Carlino 1991). A plant located in an area 

heavily populated by other establishments engaged in the same business has the 

opportunity to observe and exchange information with prior adopters. Spatial 

diffusion theories suggest that iimovation is adopted in the largest cities first, and 

then diffuses to smaller cities. Radial diffusion theories also favor early adoption by 

firms in large cities, since new technologies often are first introduced in large cities 

where they are developed (Beeson 1987). Once new technologies are developed, the 

rate at which they are adopted by firms depends on the rate at which knowledge of 

the technology is diffused through the economy. 

Ability to learn. Firms that receive the same information might not derive 

equal benefit. That is, firms might differ in their ability to process information about 

an innovation. The information capacity hypothesis (ICH) (Jensen 1982) asserts that 

a greater capacity or ability to obtain and process information about an innovation 

should shorten the delay of adoption of a profitable innovation, since the firm learns 

sooner of the innovation's profitability. 

Jensen developed a model to show how the probability of adoption is affected 



www.manaraa.com

38 

by the acquisition of information. The model shows that the probability of adoption 

varies directly with the number of favorable signals received by the firm, where 

favorable signals are bits of information indicating that the innovation would be 

profitable. The firm's original estimate of the probability that the innovation will be 

profitable also affects the rate of adoption. This original estimate depends upon the 

agent's previous experience with similar technology and his attitudes towards risk. 

Risk aversion. Risk aversion has been mentioned often as a source of 

differences in innovation rates (Mansfield 1961). An innovation with the potential to 

lower costs significantly or to increase price, but with a high fixed cost, might be 

rejected by risk averse firms while risk neutral or risk loving firms are more likely to 

adopt the innovation. Furthermore, agents might differ in their prior beliefs about 

the attributes of an innovation. Even if agents receive similar information about the 

innovation, these beliefs might not be changed (Cabe, 1989). The ability of 

information to change beliefs depends upon how reliable the agent view the source of 

information. 

Information cost. Failures in the market for information might lead to 

differences in the cost of information between firms. As stated earlier, the cost of 

acquiring information about the existence, effectiveness, and application of a 

technology can affect the agent's decision to adopt. Factors that might raise the cost 

of information to a given plant include the firm's organization, the firm's relationship 

with other firms in the industry, its location relative to other firms, and its access to 

low cost sources of information such as government extension services. 
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A theory that allows for heterogeneity in a firm's exposure to new technology, 

ability to adapt to new technology, attitudes toward risk, and cost of information, is 

consistent with the idea that technical inefficiency might exist as a result of this 

heterogeneity. Plants with the greatest exposure to new technology, with the greatest 

amount of experience with similar technologies, and with more favorable attitudes 

toward risk are more likely to adopt a technology that is required to achieve technical 

efficiency. 

The Firm as a Group of Individuals 

Neoclassical theory assumes that the firm is characterized by a single 

entrepreneur. Once this assumption is relaxed, the firm can be modeled as a set of 

contracts between agents. The complexity of contracting models of the firm varies 

from the simple principal-agent model, associated most often with the work of 

Holstrom (1979), to the much more complex model of the firm as a nexus of 

contracts, often associated with Jensen and Meckling (1976). These models have in 

common the idea that the behavior of the firm is the result of a complex set of 

decisions among a number of agents with different sets of objectives. Profit 

maximization, even if it is the objective of the owners, will not always be the end 

result of the optimizing decisions of this complex group of individuals. 

Principal-agent theoiy. Principal-agent theory diverges from neoclassical 

microeconomic theory first by dropping the assumption that the firm is a unified 

agent. Once this assumption is dropped, the assumption that firms maximize profits 
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is an easy target, since the objectives of different agents within the firm diverge. 

Principal-agent theory introduces conflicts of interest between different 

economic actors through the inclusion of asymmetries of information or observability 

problems (Hart 1990). Most firms are controlled by managers, who usually have 

more information about the technology and daily operations of the firm than the 

owners. Owners rarely can observe the input efforts of the manager, and have little 

control over the actions that managers take. Under these conditions, some authors 

argue (Leibenstein 1978) that the objectives of the owners are not served by the 

managers, who have their own priorities. Subject to the incentive structures erected 

by owners, managers might seek their own objectives such as a minimum amount of 

slack time, job perks, or maximizing the breadth of his control. 

The source of divergence between the objectives of owners and the actions of 

managers is the asymmetry of information between owners and managers. Managers 

typically have more information about the production technology than do the owners. 

Thus, the owners cannot contract based on that technology, and cannot require the 

manager to produce a specific amount of product from a given set of inputs. 

Furthermore, the owners camiot observe the degree of effort that the manager 

expends in production. This information asymmetry might be a source of observed 

technical efficiency. For example, a manager might lead the owners to believe that 

the best technology possible can only lead to x amount of output with a specified 

level of inputs. The manager might know, however, that some greater amount of 

output is possible, but conceals the truth so that he has slack time, or in order to 
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facilitate side contracts with workers that allow them to shirk. 

Information asymmetries might be more prevalent worse in some firms than 

others. This depends on the structure of the board of directors, for example, and 

their experience in the production process. It also depends on how actively the board 

is involved in the operations of the firm. For privately held companies, ownership 

and control might coincide perfectly. In this case, principal-agent asymmetries of 

information would not be a source of technical inefficiencies. 

In the context of this study, principal-agent problems cannot directly be 

observed, but they may manifest themselves in technical inefficiency. In light of the 

above discussion, we expect this to be a problem in larger plants that are part of 

multi-plant firms. In this case, the management system is fragmented, further 

removing the profit maximization objectives of the owners firom the management of 

the plant. 

Two-tier agency structure. Principal-agent theory operates under the 

assumption that the firm consists of owners and managers and a "black box" 

exogenous production function (Hart 1990). The manager's decisions are 

transformed into output. However, the problems of observability and information 

asymmetry that plague the owner manager relationship also apply to the manager-

worker relationship. Workers' actions can rarely be observed completely, and 

contracts between firms and workers are incomplete. Much of the theory regarding 

the two-tier agency structure is related to the subject of hierarchies and their role as 

provider of information and incentives. Leibenstein (1975) explains that because 
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labor contracts are incomplete, information flowing through hierarchies to clarify the 

intent of the owners, to evaluate the performance of the worker, and to provide 

incentives to workers are crucial. Any distortion of these signals can result in a 

nonoptimal level of output, since the worker will either misinterpret the intent of the 

owners, or will further his own objectives without the managers' knowledge. 

If the effectiveness of information channels within hierarchies differs among 

firms, then technical efficiency might result. Unless the effectiveness of these 

hierarchies can be reflected in some obtainable variable and the process modeled, 

then firms with a more effective information and incentive mechanism may appear 

technically efficient. 

Of course, even if two firms have equally effective information channels 

between owners, managers, and workers, the incompleteness of contracts leaves them 

open to interpretation by the contractors. Differences in attitudes toward work and 

leisure are likely to affect how a worker interprets and executes his responsibilities. 

Workers do not have homogeneous utility functions with respect to their tradeoffs 

between effort and slack. Unless these utility functions are somehow included in the 

firms's objective function, then differences in the general attitude of workers toward 

work and slack will affect the observed level of technical efficiency. 

Relaxing some of the neoclassical assumptions of the theory of the firm results 

in three general sources of inefficiency: non profit maximizing or cost minimizing 

behavior, information asymmetry, and conflict between agents within the firm. While 

many of these characteristics affecting efficiency cannot be observed-for example. 
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objective function, attitudes toward risk, and attitudes toward slack-these 

characteristics may vary systematically with other, observable characteristics. For 

example, small, single unit plants might have fewer principal-agent problems, since 

management and ownership might be more closely in contact. However, cost 

minimization of profit maximization might not be the correct objective assumption for 

these plants. 

The testability of hypotheses depends to a great extent on what data are 

available. Because behavior and attitudes cannot be observed, proxy variables must 

be developed that represent conditions under which these behavior and attitudes are 

assumed to exist. Hypotheses about the relative efficiency of plants with differences 

in observable characteristics are developed in the final section of this chapter. 

Efficiency and Survival, Growth, and Competitiveness 

While many studies have focused on the relationship between industrial 

structure and efficiency, both allocative and technical, few have examined the 

causality between industry and efficiency in other direction. The relative efficiency of 

firms in the short run might affect the structure of the industry as evolutionary forces 

such as the "creative destruction" process mentioned by Joseph Schumpeter work to 

move the system toward an equilibrium in which the most efficiency plants capture 

the largest market share, while the least efficient plants cannot survive. 
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Effîciency and Survival 

What predictions does neoclassical theory hold for the effect of efficiency on 

the survival of firms? Referring to Figure 2, and abstracting from the issue of 

optimal size, and assuming all costs are variable, inefficiency implies that for a given 

level of output Q, the inefficient firm must use a vector of inputs equal to x, while an 

efficient plant needs only Ax. Hence, when input markets are perfect, the inefficient 

plant's total cost and average cost are both higher by a factor of A. In a perfectly 

competitive output market, in which price is equal to average cost, and in which 

consumers with perfect information buy only from the lowest price producer, the 

inefficient plant could not continue to operate, since its average cost is in excess of 

the lowest price of the output. 

However, several key assumptions in the above argument might be altered to 

make room in the market for plants that are not efficient. In fact, inefficient plants 

might be expected to flourish in several types of environments. Large fixed costs 

might make a plant appear less productive hi the short run, if investment cannot be 

depreciated over time. Investments in worker training and research and development 

are prime examples. 

Violations of a perfect input market might allow a seemingly inefficient firm to 

continue operating because it has lower input costs. For example, a plant with a 

monopsony over the local labor market might face lower labor costs than its 

competitors. The cost advantage allows the plant to waste some resources and 

remain competitive. If the cost advantage is large enough, the plant might continue 
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to operate for a long period of time despite its apparent inefficiency. 

Similarly, if the output market is not characterized by perfect competition, 

inefficient producers might be able to retain market share. Product differentiation 

might encourage consumers to pay a higher price for a product that is perceived as 

superior. Tacit agreements among producers to charge an artificially high price might 

allow an inefficient producer to take fewer profits that the other parties to the cartel, 

allowing him to retain his inefficiency. 

The assumption that all costs are variable implies that the efficiency referred 

to above is strictly short term efficiency. As explained above, firms make decisions 

considering a multi-period time horizon. Plants that appear inefficient in a given year 

may have made investments that improve efficiency in the long run. 

Finally, it is Hkely that plants are observed in some condition other than 

equilibrium. That is, if a plant is inefficient but surviving, it may be working toward 

sustained efficiency following a shock due to investment or reorganization of 

production. Similarly, a plant may be in the final stages of life, but still operating, at 

the time it is observed. While market forces may eventually bring these plants to 

their steady state of either efficiency or nonexistence, they might be observed at a 

single point in time before markets have cleared. 

Efficiency, Gro^vth, and Competitiveness 

Under the assumptions of perfect competition, only efficient plants will survive 

in equilibrium. Any state in which inefficient plants exist cannot be a stable 
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equilibrium; eventually the inefficient plants will die and the efficient plants will 

capture their market share. Hence, if inefficient plants exist, it is expected that 

market forces eventually will drive them out of business, and their market share will 

be captured by efficient plants. 

However, perfect competition has been assumed in this argument. As 

explained above, plants that appear inefficient might be able to gain market share 

through price competition, despite inefficiency, because of an input cost advantage. 

Other plants might gain market share through investments in advertising or product 

development that lead to product differentiation. Similarly, plants that appear 

efficient in the short run could be taking a fatalistically short-run view of profits, 

failing to invest in long-run efficiency. In fact, a common criticism of U.S. 

manufacturing industries is that the pressure to produce short term profits, brought 

about by the frenzy of takeover activity, has forced managers to abandon long term 

strategies (Dertouzos 1989). There is evidence, however, that manufacturing plants 

that lead productivity in an industry tended to remain more productive than other 

plants over a long period of time (Baily et al. 1992). 

Summary and Hypotheses 

Several testable hypotheses for the study follow from the above review of 

theories of technical efficiency. Three sets of hypotheses are derived: hypotheses 

relating firm and plant characteristics to efficiency; hypotheses relating efficiency to 

survival and growth; and hypotheses about the efficiency of the machine tool industry 
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in general, and differences between the metal-cutting and metal-forming machine tool 

industries. 

Sources of Inefficiency 

Neoclassical and alternative theories of the firm were invoked to explain why 

differences between firms might exist and how these might lead to technical 

inefficiency. Neoclassical theory attributes all inefficiency to measurement error. 

Hence, any plant characteristic or input that differs between firms but cannot be 

specified or measured accurately might manifest itself as inefficiency. The alternative 

views of firm behavior cite deviation from optimizing behavior, information 

asymmetries, and the conflicts between the agents that comprise the firm as sources 

of heterogeneity. In this section, each of these theories is cited to develop hypotheses 

about how efficiency might vary according to observed plant characteristics. 

Size 

Larger plants are expected to exhibit higher efficiency for a number of 

reasons. First, large plants are more likely than small, family owned and operated 

plants to pursue a profit maximization or cost minimization strategy. Second, the 

owners and managers of large plants are less likely to be averse to risk, since the risk 

probably involves little personal loss. Furthermore, large firms are likely to have 

better access to markets that allow hedging to offset risk. Third, large plants are 

likely to have better developed information networks, and are more likely to generate 
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on-the-floor innovation, simply by virtue of having more workers to develop more 

efficient production processes. Finally, large plants are more likely to invest in new, 

expensive technology because they are able to spread large fixed costs over a greater 

quantity of output and are able to benefit from specialization in production. 

However, small plants might have fewer principal-agent problems, promoting 

the communication of the objectives of the owner to the managers. Their small size 

is also likely to minimize worker supervision problems. Furthermore, employees may 

be less likely to shirk if they feel that they have a personal stake in the success of the 

firm. This is more likely for small, family-owned and -operated firms. 

Age and Investment 

It is expected that a pattern of efficiency will be observed over the life of a 

plant in which new plants are inefficient at first, until the initial adjustment to the 

plant is complete. Beyond the initial adjustment period, the age of the plant itself is 

much less important than the vintage of the equipment. Hence, investment is likely 

to be associated with efficiency in a pattern similar to that observed for new plants. 

The effect of investment on efficiency should be greatest once the adjustment has 

been made, but before the efficiency advantage has been relinquished to newer 

technology. 

Ownership 

Plants that are part of multi-plant firms should exhibit higher efficiency for 
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several reasons. First, multi-plant economies exist due to coordination of production 

and distribution and economies of scope (Caves 1990). Second, plants that are part 

of multi-unit firms might acquire information from other divisions of the firm that is 

not available to single unit plants. Finally, measurement error might artificially 

inflate efficiency for multi-unit plants, since they often have lower overhead costs 

because administrative functions are handled by the corporate office. 

However, plants that are part of multi-unit plants might have more serious 

principal-agent problems than single unit plants. Furthermore, since the plant is only 

one unit of the firm's operation, profit maximization for the firm might not 

necessarily imply that the plant will be run efficiently. Other firm objectives, such as 

vertical integration, control over a strategic resource, or the need to attract capital 

might affect the efficiency of the operations of the plant. 

Average Production Worker Wage 

Because production labor is measured in hours, it does not reflect differences 

in worker skill that might be reflected in salaries. Plants with higher average 

production worker wages should have workers of higher skill and education, if labor 

markets are efficient. These higher skill workers should contribute to efficiency not 

only because they can perform established tasks more efficiently, but also because 

they increase the information available to the firm about technology and production. 

Finally, higher wage workers may be less likely to shirk since they might enjoy a 

higher level of job satisfaction. 
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Metropolitan versus Nonmetropolitan Location 

Plants located in metropolitan areas probably will exhibit higher efficiency due 

to agglomeration economies. Some of the factors that contribute to agglomeration 

economies include proximity to suppliers and customers, access to a diverse and 

skilled labor force, and proximity to other producers. Proximity to customers and 

other producers is especially important because it facihtates the exchange of 

information regarding the needs of the customers and recent innovations in products 

and processes. 

The advantage of metropolitan location might be reduced if nonmetropolitan 

plants can find ways to acquire information that do not require proximity to other 

manufacturing plants, customers, or suppliers. For example, they might form 

consortia or other associations with other manufacturing plants that replace the 

informal contact that follows from proximity. Government programs such as 

industrial extension might be an important catalyst for these associations and 

consortia. Furthermore, input prices, including land and labor, might be lower in 

nonmetropolitan areas. 

Access to Industrial Extension 

Industrial extension services act as a source of inexpensive information for 

manufacturing plants. While the availability of extension services in a state does not 

necessarily imply direct intervention by the extension agent in the activities of firms, 

there are indirect activities performed by extension agents that increase the flow of 



www.manaraa.com

51 

information to all manufacturing firms in the state. For example, most extension 

offices circulate a newsletter to all manufacturing plants in their constituency. These 

activities might serve to correct for market failure in information. Furthermore, 

extension assistance to one plant might have spillover benefits to other plants that 

transmit the information by word of mouth and the formal and informal associations 

mentioned above. 

There may be a reverse causation dampening the efficiency effect of access. 

That is, states in which manufacturing is suffering from severe problems of 

competitiveness and survival might be more likely to institute extension program sin 

response to these problems. If some period of time is required between the 

establishment of the service and the positive benefits of the flow of information, then 

some states with more recently established extension programs might have less 

efficient plants, even after the extension service has been established. 

Direct Intervention by Extension Agents 

A subset of the data is analyzed for the impact of direct intervention by 

extension agents. The impact of the extension on the efficiency of that plant is 

expected to be positive; however, self selection bias taints any analysis comparing 

assisted firms with non-assisted firms. This is because plants that come to the 

attention of extension service, or those that actively seek extension assistance often 

are the least efficient plants, in danger of shutting down, and searching for help out 

of a crisis situation (Clarke and Dobson, 1991). 
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A comparison of the efficiency of plants before and after assistance is provided 

is probably the best way to examine the direct effects of assistance while controlling 

for selectivity bias. In order to perform this analysis, a time series of manufacturing 

data that spans the period of intervention, as well as the exact dates of intervention, 

would be needed. Unfortunately, the data available for this study are not detailed 

enough to allow this level of analysis. 

Use of Advanced Technologies 

While new investment will reflect the vintage of the capital equipment used in 

the production process, it will not reflect the level of technology embodied in the 

equipment. Information on the number of advanced technologies used by a plant is 

available for a small subset of plants from the 1988 Survey of Manufacturing 

Technology. It is expected that plants using a larger number of advanced 

technologies in production will be more efficient. However, this is likely to depend 

on how extensively the technology is used in production. That is, if the technology is 

being used primarily for demonstration and training, or has been integrated into only 

a small portion of the production process, the efficiency impact of the technology will 

be reduced. 

Effects of Inefficiency 

Martin Baily et al. (1992) found that one feature of the productivity of 

manufacturing plants over time was the persistence with which plants on the top 
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remained productive. We expect a similar patter to emerge with respect to the 

efficiency of plants in the machine tool industry. Efficient plants are likely to survive 

longer, to remain efficient, and to capture a larger market share than inefficient 

plants. Exceptions to this might occur in the case of young plants which, while they 

may be equipped with recent technologies, skilled workers, and knowledgeable 

managers, are likely to be relatively inefficient until they have adjusted to the 

production process. 

Inter industry Differences 

The two industries that make up the machine tool industry will be examined 

separately. Although plant, rather than industry, characteristics that affect technical 

efficiency are the main focus of this study, the characteristics of the industries will be 

compared, and their implications for efficiency will be examined. 

Three factors are likely to contribute to differences in the average efficiency of 

an industry: competitive conditions, product differentiation, and the rate of 

technological change (Caves and Barton 1990). An industry with highly competitive 

input and product markets will force out inefficient firms. However, deviations from 

perfect competition might allow for firms that appear less efficient. 

Demand for machine tools is highly cyclical. Because the industry uses highly 

skilled labor with skills that are firm-specific, firms often hesitate to fire workers 

during slack times. Capacity utilization is also highly volatile. This is likely to show 

up as a fall in efficiency during recessions. These conditions are fairly uniform in 
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both the metal-cutting and metal-forming tool industries. 

While the metal-cutting tool firms are the core of the industry, they both are 

comprised of many small firms, and few large producers exist in the industry. 

However, the range of customers of metal-forming tools is much more limited. While 

metal-cutting tools are used by thousands of machine shops and metal product 

manufacturers, demand for metal-forming tools comes mainly from automobile and 

appliance manufacturers that use sheet metal in production (Baily and Chakrabarti 

1988). Hence, the fate of the industry is strongly tied to the fate of durable goods 

manufacturing. This could show up in differences in the timing of average efficiency 

changes. 

Policies for Improving EfQclency and Competitiveness 

The categories given above for sources of inefficiency can be used to classify 

recommendations for improving efficiency. For example, policies to improve input 

quality include worker education and training, which have been given high priority by 

an number of commissions that have studied the competitiveness issue (Dertouzos, 

1989). Improving the quality of the nation's fixed capital stock, both private and 

public, has also become a high priority for policymakers, including Congress and the 

mayors of large cities. Policies that improve the flow of information include the 

encouragement of consortia and the development of industrial extension services. 

State venture capital programs have tried to ensure that small firms can obtain the 

capital they need to invest in emerging technologies and remain competitive, and they 
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encourage risk sharing. 

This study aims to identify the most important and persistent sources of 

inefficiency, and thereby suggest policies that may be successful in eliminating sources 

of inefficiency. While this study focuses on the machine tool industry, patterns of 

inefficiency in other traditional manufacturing, particularly durable goods 

manufacturing, are likely to be similar. If the sources of inefficiency in plants can be 

identified, and if policies to counteract these weaknesses can be constructed, 

efficiency and competitiveness might be improved in a number of declining industries. 
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CHAPTERS. DATA 

This analysis of efficiency and factors affecting it employs three plant-level 

data sets. Production data are derived from the Longitudinal Research Database 

(LRD), which is a detailed account of the products produced and the inputs used by 

U.S. manufacturing plants, collected and maintained by the U.S. Census Bureau. 

Information about the participation of manufacturing plants in technology extension 

activities was collected from several state manufacturing extension services. Data 

reporting the technologies used by plants are obtained from the 1988 Survey of 

Manufacturing Technology, also collected by the U.S. Census Bureau. In this 

chapter, each data source is described, variables used for the analysis are defined, 

data editing procedures are explained, and basic statistics for the U.S. machine tool 

industry are discussed. 

The Longitudinal Research Database 

Production data are from the Longitudinal Research Database (LRD), created 

and maintained by the Center for Economic Studies at the U.S. Bureau of the 

Census. The LRD is a panel data set constructed by linking individual establishment 

records from the Census of Manufactures (CM), which occurs every five years, and 

the Annual Survey of Manufactures (ASM). The longitudinal linking of plant-level 

observations across years makes it possible to monitor the history of a plant's 

production activities. 
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Census of Manufactures 

The Census of Manufactures is a complete enumeration of all manufacturing 

plants that had one or more persons employed at any time during the census year. 

Because the plant is the basic unit of observation, firms that operate more than one 

plant are required to file separate reports for each plant. Associated with each 

establishment record is a permanent identification number and location. Both of 

these items are associated with the estabhshment from its birth until it permanently 

ceases operations. The plant-level data include shipments, materials by detailed 

(seven-digit) product code, inventories, employment, wages, salaries and fringe 

benefits, energy use, cost of contract work, investment, book value of capital, capital 

rentals, ownership, and the legal form of organization of the owning firm. Each of 

the censuses from 1963 to 1987 contains between 300,000 and 350,000 manufacturing 

plants (U.S. Department of Commerce 1991). 

An establishment is classified in a particular industry on the basis of its major 

activity during the year of record, i.e., production of the products primary to the 

assigned industry exceeds, in value, production of the products primary to any other 

single industry. Hence, the disappearance of an establishment firom an industry does 

not necessarily imply that it has ceased operation. Rather, it may have reorganized 

its production to result in a different industrial classification. All plants classified in 

either of the machine tool industries at any time during the sample period were 

examined. Thus, plants that change industries can be distinguished from plants that 

cease operations. Coverage codes identify establishments that have a change of 
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status from the previous year that affects identifiers for their data on the LRD for the 

year of reference. For example, plants that change to a non manufacturing industry 

and plants that are temporarily out of operation are assigned coverage codes to 

indicate their status. 

Not all establishments actually report data to the Census Bureau. Beginning 

in 1967, the reporting burden for some small establishments was reduced by 

developing statistics for these establishments from records of the Internal Revenue 

Service and the Social Security Administration. The administrative statistics obtained 

from these records include the firm's name and address, payroll, and gross business 

receipts. Other statistics for these smaller firms are estimated using industry averages 

in conjunction with the administrative information. The impact of administrative 

records cases on industry aggregates is slight; they represent less than two percent of 

total value added in manufacturing (McGuckin and Pascoe 1988). However, when 

analysis is being conducted on an individual establishment level, as in this case, the 

existence of imputed data can be troublesome. For this reason, administrative 

records cases are eliminated from the analysis. The percentage of plants eliminated 

from the census data for this reason is about 25 percent in 1972 and 50 percent in 

1977 and 1982. However, the percentage of shipments represented by the eliminated 

plants is never greater than 5 percent. 

Annual Survey of Manufactures 

The Annual Survey of Manufactures is conducted in each of the four years 
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between the censuses. It is administered to a sample of establishments drawn from 

the universe of establishments in the Census of Manufactures. The sample is 

selected during the year following each census and is used for data collection for 5 

years. After 5 years, a new sample is drawn from the most recent census. 

All establishments with more than 250 employees are sampled in the ASM. 

The probability of inclusion for smaller establishments is proportional to their size. 

Prior to 1979, company affiliation also played a role in sample selection; that is, if a 

plant owned by a multi-establishment company was included in the sample, all of the 

company's other plants were required to report their data, regardless of size. Thus, 

all firms in the ASM sample for these years were complete in the sense that all their 

manufacturing establishments were included. 

In each of the years following the selection of a panel, some changes were 

made in the panel to reflect similar changes in the general population. A sample of 

new plant births, as identified by social security records, was added to the panel, and 

plant deaths were represented as they occurred. Although these procedures were 

followed in an effort to maintain the statistical properties of the sample in relation to 

the general population, it is likely that, over the sample period, the panels became 

less and less representative of the general population. 

Although an aimual survey has been taken every year since 1949, the linkage 

between plants across years and between the Census and the ASM extends back in 

time only to 1972. The period covered by the data for this study includes four ASM 

panels: the 1969-1973 panel, the 1974-1978 panel, the 1979-1983 panel, and the 1984-
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1988 panel. The procedures for sample selection and panel evolution that were used 

in the 1969 panel were followed for the 1974 panel. However, in 1979, a new 

procedure for sample or panel selection and calculation of survey statistics was 

adopted. In 1984, more changes in the procedure, although relatively minor 

compared to the revisions of 1979, were incorporated into the procedure. 

Changes in samphng procedures and probability weights across ASM panels 

suggest that if the ASM data are to be partitioned for any reason, the years for a 

given panel should be kept together. Changes in the number of plants over the 

sample period then can be interpreted as representing changes in the general 

population, rather than changes in the sampling procedure. Evidence of changes in 

the general characteristics of the panels is provide by Tables 3 and 4. The ASM 

panel for 1974-1978 was based on the 1972 census, and the panel for 1979-1983 was 

based on the 1977 census. Despite an increase in the number of plants in the census 

in the metal-cutting machine tool industry, the number of plants in the ASM sample 

declined from 1978 to 1979. In the metal-forming machine tool industry, the number 

of ASM plants increased from 1978 to 1979 by 73, even though the number of plants 

in the census increased by only 44. Clearly, changes in the sampling procedures 

between panels have affected the makeup of the ASM sample. 

Census-ASM Differences 

Aside from obvious differences due to the sample selection probabilities for 

the ASM (i.e., the ASM is skewed toward larger plants, and has no administrative 
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Table 3. Effects of data editing procedures on sample sizes for industry 3541, 
metal-cutting machine tools 

TVS Percent of 
Number of Observations Full Sample TVS^ 

Mail, 
Mail 20+ Final Panel Final Panel 

Year Total Cases Empl. Sample Sample Sample Sample 

Census Sample 

1972 864 599 264 299 198 93.1 81.6 

1977 915 460 297 306 247 94.9 89.8 

1982 939 395 288 300 241 94.9 8&2 

1987 417 417 232 245 174 90.9 79.2 

ASM Sample 

1972 864 202 153 162 151 85.1 84.2 

1973 227 227 162 . 165 160 99.0 98.9 

1974 135 167 135 135 133 99.4 99.1 

1975 172 172 129 134 134 99.6 99.7 

1976 164 164 134 135 135 98.7 99.7 

1977 915 160 124 122 122 79.9 80.4 

1978 171 171 134 131 126 99.2 99.0 

1979 139 139 128 128 131 99.8 99.5 

1980 139 139 131 131 136 99.9 99.9 

1981 152 152 138 137 127 99.6 99.8 

1982 939 155 133 132 115 81.1 79.4 

1983 143 143 118 122 131 98.2 95.9 

1984 146 146 131 132 127 99.6 99.3 

1985 148 148 135 130 95 96.7 96.3 

1986 141 141 122 — — — — 

1987 417 119 105 107 95 73.6 70.9 

^TVS=total value of shipments. 
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Table 4. Effects of data editing procedures on sample sizes for industry 3542, 
metal-forming machine tools 

TVS Percent of 
Number of Observations Full Sample TVS^ 

Mail, 
Mail 20+ Final Panel Final Panel 

Year Total Cases Empl. Sample Sample Sample Sample 

Census Sample 

1972 375 285 160 175 112 95.4 79.6 

1977 419 201 158 162 132 93.3 88.5 

1982 447 253 156 172 135 92.7 81.5 

1987 207 207 120 133 95 93.7 73.8 

ASM Sample 

1972 375 120 102 104 102 83.5 82.9 

1973 131 131 106 107 104 99.2 98.3 

1974 118 118 103 104 103 99.7 99.4 

1975 107 107 97 101 101 99.9 99.9 

1976 115 115 101 106 103 99.9 99.1 

1977 419 100 86 88 87 80.4 80.0 

1978 104 104 88 90 89 99.5 99.4 

1979 177 177 105 110 107 97.7 93.4 

1980 167 167 101 109 108 98.0 97.9 

1981 160 160 92 102 102 97.6 97.8 

1982 447 115 78 87 84 73.3 72.8 

1983 116 116 76 83 79 94.2 93.2 

1984 66 66 60 59 59 98.4 98.4 

1985 65 65 59 60 60 99.1 99.1 

1986 62 62 56 — — — " 

1987 207 63 57 57 49 70.0 64.5 

®TVS=total value of shipments. 
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records cases), there are other differences between the content and quality of the two 

data sets that might affect the quality of the estimates derived from them. Data from 

ASM plants are more detailed with respect to assets; in fact, asset data are imputed 

from industry averages for all non-ASM plants for all years except 1987. 

Imputation 

Two important differences between the data from the ASM plants the non-

ASM plants are the level of imputation and the imputation method. Aside from the 

administrative records cases already mentioned, data from the Census of 

Manufactures tends be particularly subject to imputations. Since the ASM plants are, 

on the average, larger, and since the plant managers are required to complete a 

survey every year, their own knowledge of their operations tends to be more detailed 

and rehable. Furthermore, since ASM plants are surveyed every year, variables that 

are missing for a particular year are imputed from the same plant's information from 

the previous year. For non-ASM plants, imputation is based on key industry ratios 

for the plant's industry and its size. The result of this type of imputation is that much 

of the heterogeneity in the operations of plants is obscured, particularly with respect 

to the capital stock. 

An examination of plant-level ratios of output to capital stock provides 

evidence of imputation: ratios that are identical for groups of plants in a given size 

class. The impact of these imputations on the empirical results is not completely 

clear. However, in Chapter 5, inconsistencies in the estimates of stochastic frontiers 
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for the two samples imply that the census data obscure plant heterogeneity, resulting 

in underestimates of technical inefficiencies at the plant level. This problem for the 

use of census data in efficiency analysis is discussed in more detail in Chapter 5. 

Data Editing Procedures 

Two samples were developed for each machine tool industry. The first sample 

included census year observations for 1972, 1977,1982, and 1987. The second sample 

consisted of observations for ASM plants from 1972 to 1987. Data for 1986 were not 

used because serious problems with inconsistency in the capital stock data for that 

year were discovered. 

Tables 3 and 4 show how the data editing process affected the number of 

observations in each sample for each year. Column 2 in each table shows the total 

number of observations for the industry and year. In census years, this represents the 

total population of plants in the industry. In non-census years, it represents the total 

number of plants in the ASM sample. 

The total number of establishments in industries 3541 and 3542 was 

questionable. The probability that many of these plants were misclassified was 

brought to the attention of the Census Bureau by the National Machine Tool 

Builders' Association, which asserted that there was some minimum number of 

employees required to manufacture machine tools. In 1987, to decrease the number 

of misdassifîcations, the Census Bureau reclassified all administrative records cases. 

All plants classified in industry 3541 or 3542, returned a census form explidtly 
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indicating that it manufactured products in that industry. All administrative records 

cases were placed in industry 3545 (machine tool accessories) for 1987. The result of 

this change was that the number of establishments was not strictly comparable 

between 1987 and earlier years; however, industry aggregates are barely affected 

(McGuckin and Pascoe 1988). 

Despite this adjustment, there still existed a number of very small plants that 

returned forms indicating 3541 or 3542 as their industry. Based upon the advice of 

Wilham Brennan, Industry Economist for the National Machine Tool Builders' 

Association, all plants that never employed more that 20 workers were deleted from 

the sample. Mr. Brennan suggested that any plant with fewer than 20 employees had 

probably incorrectly been identified as a machine tool builder, when it actually 

operated a tool and die shop or manufactured machine tool accessories. 

Rather than simply deleting all observations in which total employment fell 

below 20, plant histories were examined, and cases in which a plant's employment fell 

below 20 temporarily were identified. These observations were kept in the sample in 

order to maintain a complete time series of observations on such a plant. 

Column four of Tables 3 and 4 lists the number of mail cases with 20 or more 

employees. The number of observations in each of the final samples is listed in 

column five. The difference between columns four and column five is due to the 

number of observations added-back for selected small plants, as described above, the 

observations removed because they had zero values for input or output variables, and 

the observations removed because they were outliers. The identification of outliers 
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was based upon the size of several key ratios: capital-labor, output-labor, and 

materials-output. A plot of the distribution of each ratio for each sample was used to 

delete observations lying in the extreme ends of very thin tails. 

Because some of the econometric procedures applied required panel data, a 

sample was developed that contained only plants observed at least twice. The 

number of plants satisfying this criteria in each year in each sample is listed in 

column six of Tables 3 and 4, The final columns of Tables 3 and 4 indicate what 

percentage of the total value of shipments the final samples represent. Note that 

despite the elimination of a number of observations, most of the value of shipments 

is still accounted for by the plants retained in the sample. 

Variable Construction 

The inputs and outputs are calculated separately from the LRD for each 

manufacturing establishment. The LRD data are supplemented by deflators from 

Gray (1989) and the Bureau of Economic Analysis, and by capital cost measures from 

the Bureau of Labor Statistics. Table 5 provides a list of the variable abbreviations. 

Output 

Nominal output, VQ, is defined at the plant level as the total value of 

shipments, adjusted for changes in inventories of finished goods (FGI) and 

work-in-process (WIPI), as shown in equation 3.1: 
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Table 5. Abbreviations for key variables 

Variable 
Name Description^ 

Q Real output 

M Real value of materials 

VQ Nominal output 

TVS Total value of shipments 

endFGI Finished goods inventory, end of year 

begFGI Finished goods inventory, beginning of year 

endWIPI Work-in-process inventory, end of year 

begWIPI Work-in-process inventory, beginning of year 

APWW Average production worker wage 

PWW Total production worker wages 

PWH Total production worker hours 

NPWW Total Non-production worker wages 

L Labor (production worker equivalent hours) 

K Capital stock (net, in constant dollars) 

GBV Gross book value of the capital stock 

NSTKCON Net industry capital stock (2 digit), constant dollars 

GSTKfflS Gross industry capital stock (2 digit), historical dollars 

BR Building rent 

ERR Building rental rate (2 digit industry) 

MR Machinery rental 

MRR Machinery rental rate (2 digit industry) 

®all dollar denominated variables are reported as thousands of dollars; labor 
is reported as thousands of hours. 
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VQ = TVS + iendFGI - begFGl) + (endWIPI - begWIPI). (31) 

Real output is computed by dividing the nominal output by the industry shipments 

deflator for the given year. The four digit shipments and materials deflators are 

described by Gray, 1989. This deflator series only exists through 1986. Deflators for 

1987 were developed by calculating the ratio of the Producer Price Index (PPI) for 

1987 for the four digit industry to the PPI for 1986 from the Bureau of Labor 

Statistics. This ratio was then applied to the 1986 Gray deflator. 

Labor 

Total hours is a more accurate measure of actual labor input than the number 

of employees; however, because data on the number of hours for nonproduction 

workers are not available, some estimate must be developed. The Census of 

Manufactures provides data on the number of production and nonproduction 

employees, production and nonproduction salaries and wages, and, for production 

employees, the number of total hours actually worked. Two estimates of 

nonproduction worker hours were considered. For the first, a 2000 hour work year 

was assumed for nonproduction employees, and the number of nonproduction 

workers was multiplied by 2000. An alternative estimate, used by both Lichtenberg 

and Siegel (1987) and Nguyen and Reznek (1991), measures production worker 

equivalent hours, assuming that relative wages are proportional to marginal 

productivity. The average production worker wage rate is the ratio of total 
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production worker wages to total production worker hours. Total plant worker hours 

then can be estimated as the ratio of total wages for all workers divided by the 

average production worker wage rate, as shown in equation 3.2. 

APWW = 

(3.2) 
^ ^ PWW + NPWW 

APWW 

Two factors motivated a decision to use the average production worker wage 

rate. First, the number of nonproduction employees is collected on March 12; 

fluctuations occurring throughout the year are not observed. However, total wages 

are reported for the entire year, and will reflect these fluctuations. Furthermore, 

many nonproduction workers may work part-time; assuming a 2000 hour work-year 

for every worker clearly overestimates some actual contributions. 

Materials 

Total materials consists of five components: parts and materials, electricity, 

contract work, resales, and fuels. All materials data are adjusted for inventory, 

reflecting the actual value of materials used in the production process. To build a 

materials measure that was comparable over time, the total value of materials was 

deflated by the materials deflators developed by Gray (1989). This deflator was 

created by averaging together price deflators for 529 inputs, using as weights the 

relative size of each industry's purchases of that input in the Census Bureau's input-
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output tables (Gray 1989). This deflator has not been constructed for 1987. For 

1987, a procedure similar to that used for the shipments deflator was used. A 

weighted average of the change in the PPI for the materials used in each industry was 

constructed, with weights assigned according to the percentage of total materials that 

each materials category represented. This weighted average was applied to the 1986 

Gray materials deflator. 

Capital services are measured ideally as machine hours per year, with 

adjustments for the vintage of machinery and the intensity of its use. For most 

practical applications, the common practice is to use the perpetual inventory method 

to deflate the value of the gross capital stock, and then to adjust this by a utilization 

rate (Usher 1980). In this study, capital input is the plant's net stock of capital in 

constant dollars, which is estimated by the same algorithm used by Lichtenburg and 

Siegel (1987): 

where i represents the plant, j represents the industry, and t represents the year. 

GBV is the gross book value of the capital stock as given on the LRD, GSTKHIS is 

the gross stock of industry assets for the two-digit industry, valued on a historical 

basis; NSTKCON is the net capital stock of the two-digit industry, valued in constant 

Capital 

NSTKCON„\ 

GSTKHIS, 
(3 3) 
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(1982) dollars. Both of these are obtained from the Bureau of Economic Analysis. 

Applying the adjustment ratio converts the gross, current dollar measure of capital, 

GBV, to a net of depreciation, constant dollar measure that approximates a perpetual 

inventory measure of the capital stock, with the proviso that the adjustment for 

depreciation is taken at the two-digit industry level, rather than on an individual plant 

basis. Additions to the capital stock due to building and machinery rental are 

constructed by dividing the rental expenditure from the LRD by the building and 

machinery rental rates from the BLS. 

This measure of capital input clearly is imperfect and several problems are 

worth noting. First, the combination of machinery and buildings into one capital 

input measure implies that they are homogenous factors; arguments against this 

undoubtedly have merit. Second, no adjustment is made for vintage or intensity of 

use. Finally, the adjustment for depreciation is the same for all plants in a given two 

digit industry. 

Unfortunately, these problems are unavoidable, given the constraints on the 

data and the desired sample. Separate data for equipment and structures are 

available only for plants that are in the ASM sample; individual plant capacity or 

intensity of use measures are virtually unobtainable. Perpetual inventory methods of 

capital measurement are available only for firms in the ASM sample that are 

observed continually firom 1972 to 1987. This would severely limit the data on small 

establishments. 

Concerns about the capital measurement problem are mitigated somewhat by 
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studies suggesting that gross capital stock may be a reasonable proxy for real capital 

input. Doms (1992) has estimated capital efficiency schedules by inserting a 

parameterized investment stream for a capital variable in the production function. 

This specification allows the data to dictate the rate at which the capital depreciates. 

Estimation of the production function together with the capital efficiency schedule 

was compared to a baseline case in which the capital variable was constructed with 

economic depreciation rates similar to those used for this analysis. The results for 

Cobb-Douglas technology indicated that the estimated geometric rate of deterioration 

of the capital stock was nearly identical to the baseline case. Other functional forms 

for the efficiency schedule, i.e., Box Cox and polynomial models, nearly replicated the 

geometric results. 

The results from Doms (1992) did not include an adjustment for capacity 

utilizations, but an attempt was made to assess the impact of capacity utilization on 

the efficiency schedules and the parameters of the estimated production function. 

Plant specific capacity utilization rates are not available from public sources, but 

Doms obtained private estimates of capacity for the raw steel industry. The 

collection of capacity utilization for the raw steel industry was facilitated by the small 

number of plants in the industry. Doms constructed capacity utilization by dividing 

these capacity estimates by the actual output for each plant. When this measure was 

included in models to estimate efficiency schedules, the output elasticity of capital 

increased, but the parameters for the efficiency schedules remained unchanged. 

Failure to include capacity utilization in the measurement of capital is likely to bias 



www.manaraa.com

73 

the output elasticity of capital downward. 

However, the seriousness of this limitation depends on how efficiency is 

viewed. Given that capital is a fixed factor of production, and given that capital 

located in a machine tool plant cannot be reallocated to other uses when it is not in 

service in the short run, the estimates of technical efficiency resulting from a 

specification that does not adjust for capacity utilization includes this "waste" of 

productive resources. This waste is likely to be overestimated, since buildings and 

machinery depreciate more slowly when they are not used. When interpreting the 

results of the technical efficiency measures, it is important to recognize that they 

include effects of allowing resources to be idle. 

Basic Industiy Statistics 

Tables 6 and 7 show the average values for the input and output data used for 

the analysis of the machine tool industry. As expected, the average size of a plant is 

higher in the ASM sample than in the census sample for both industries. Plants in 

metal-cutting machine tools are, on the average, larger than plants in metal-forming 

machine tools. 

The cyclical nature of the industry is apparent from the rise and fall of the 

real value of output, which reached a trough in 1983. Both labor hours and materials 

rose and fell fairly consistently with output. The real value of the capital stock, 

however, rose through 1983. This reflects the continuation of increases in investment 

in new machinery that began in the industry in the late 1970s (March 1989). 
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Table 6. Average values of variables for production function estimation by year 
for metal-cutting machine tools 

Year Plants Output Labor Materials Capital 

Census Sample 

1972 299 4,406 366 1,583 4,973 

1977 305 5,274 411 1,942 4,992 

1982 299 4,416 369 1,962 6,264 

1987 245 3,322 273 1,660 5,135 

ASM Sample 

1972 164 7,341 598 2,638 8,463 

1973 171 9,332 706 3,561 8,072 

1974 137 12,192 924 4,821 9,781 

1975 136 10,732 813 4,404 10,103 

1976 137 9,347 770 3,352 10,095 

1977 127 10,739 819 3,972 10,246 

1978 134 11,400 840 4,683 9,779 

1979 128 13,083 970 5,569 11,087 

1980 131 12,904 987 5,703 11,567 

1981 141 11,961 897 5,172 11,577 

1982 133 8,425 684 3,701 12,906 

1983 122 5,306 514 2,384 12,244 

1984 135 6,150 518 2,879 10,713 

1985 133 6,275 519 2,945 10,487 

1987 105 6,232 506 2,996 9,977 
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Table 7. Average values of variables for production function estimation by year 
for metal-forming machine tools 

Year Plants Output Labor Materials Capital 

Census Sample 

1972 175 3,747 303 1,491 4131 

1977 162 3,725 316 1,536 4048 

1982 172 2,231 222 1,172 4359 

1987 133 2,856 220 1,428 3946 

ASM Sample 

1972 104 5,490 444 2,218 
6283 

1973 107 6,980 519 2,733 6338 

1974 104 7,256 537 3,137 6333 

1975 101 5,825 465 2,525 6246 

1976 106 4,664 375 2,042 5437 

1977 88 5,917 488 2,517 6470 

1978 90 6,014 497 2,747 6299 

1979 110 5,261 424 2,518 5655 

1980 109 4,693 405 2,333 5834 

1981 102 4,105 370 2,000 7326 

1982 87 3,469 335 1,827 5840 

1983 87 2,677 249 1,339 7520 

1984 59 4,455 368 2,205 8055 

1985 60 5,279 414 2,417 7025 

1987 57 4,955 372 2,391 7025 
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The U.S. machine tool industry response to cyclicality has had an important 

impact on competitiveness. Typically, U.S. machine tool builders allowed backlogs of 

orders to accumulate during busy times and worked off the backlog during slow 

times. While this strategy was effective for smoothing the cycle before the onset of 

foreign competition, the boom of the late 1970s was met with a significant rise in 

imports which did not diminish once the U.S. industry had worked off its backlog. 

Japanese suppliers were able to capture a share of the U.S. market, at first by filling 

orders more quickly, and then by continuing to impress customers with improving 

quality (March 1989). 

Tables 8 and 9 provide traditional simple productivity statistics, averaged by 

year. Output per labor hour remained fairly stable throughout the period. This 

reflects the ability to spread orders over time, and to some extent, to layoff workers 

to adjust for changes in demand. Note, however, that in 1983, output per labor hour 

fell to a minimum, reflecting the resistance of the machine tool firms to lay off 

workers with specific skills that were not easily replaced. Output per labor hour 

recovered strongly in 1984 in both industries. 

The time trend of capital per labor hour reflects not only the rise in the 

capital stock over the period, but also the problem of capacity utilization. The 

traditional idea that increasing the amount of capital for a fixed amount of labor will 

increase productivity cannot hold if that capital is idle. This point is underscored by 

the trend in output per unit of capital. Clearly, the existing capital stock was not 

declining in productivity, but was not being used to full capacity. 
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Output/ Capital/ Output/ Total Factor 
Year labor hour Labor hour Capital Productivity 

Census Sample 

1972 12.26 11.43 1.28 0.116* 

1977 12.46 11.12 1.22 0.107* 

1982 11.86 13.44 1.08 -0.080* 

1987 11.72 16.31 0.95 -0.180* 

ASM Sample 

1972 13.71 13.23 1.41 0.090* 

1973 14.95 10.94 1.76 0.132* 

1974 15.35 9.94 1.95 0.111* 

1975 13.95 11.62 1.49 0.030 

1976 13.58 12.37 1.36 0.057* 

1977 15.74 12.94 1.39 0.101* 

1978 13.96 10.56 1.69 0.047* 

1979 14.00 11.02 1.52 0.021 

1980 13.27 10.97 1.41 -0.036 

1981 13.69 13.20 1.33 -0.040 

1982 13.08 18.92. 0.87 -0.086* 

1983 11.74 23.15 0.65 -0.147* 

1984 14.35 19.63 1.03 -0.092* 

1985 13.90 19.05 0.96 -0.122* 

1987 12.71 19.32 0.89 -0.169* 

* indicates that the mean of total factor productivity is significantly different 
from zero. 
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Table 9. Basic productivity statistics by year for metal-forming machine tools 

Output/ Capital/ Output/ Total Factor 
Year labor hour Labor hour Capital Productivity 

Census Sample 

1972 12.90 12.52 3.10 0.196* 

1977 11.66 12.73 1.15 0.040 

1982 9.29 15.54 1.07 -0.187* 

1987 12.09 16.74 0.94 -0.065* 

ASM Sample 

1972 13.32 13.79 1.18 0.116 

1973 14.65 11.92 1.54 0.196 

1974 14.54 11.68 1.57 0.171 

1975 12.42 13.25 1.23 0.067 

1976 13.04 14.09 1.21 0.074 

1977 12.47 14.00 1.19 0.039 

1978 12.18 13.06 1.20 -0.007 

1979 11.78 11.54 1.30 -0.018 

1980 10.39 12.03 1.10 -0.142 

1981 9.98 12.89 1.06 -0.157 

1982 10.26 19.31 1.27 -0.186 

1983 9.82 21.73 0.65 -0.182 

1984 12.35 18.69 0.91 -0.053 

1985 13.42 18.35 0.93 -0.007 

1987 14.38 19.83 1.06 0.003 

* indicates that the mean of total factor productivity is significantly different 
from zero. 
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Total factor productivity (TFP) was calculated simply as the average of the 

residuals from estimation of a traditional three factor Cobb-Douglas production 

function. These averages are a measure of the productivity of plants in each year 

relative to the average (Lichtenburg and Siegel, 1987). That is, the expectation of the 

residuals for all observations is equal to zero, and deviations from zero represent 

productivity above or below the average for all observations. 

Figures 4 and 5 provide a visual representation of the productivity measures in 

Tables 8 and 9. Total factor productivity was been multiplied by 100, and output per 

dollar of capital was been multiplied by 10, so that the statistics could be displayed 

on a single plot. 

Despite a fairy steady trend for both labor and capital productivity in industry 

3541, TFP trended downward from 1977 to 1987. The short recovery following the 

1982-83 recession probably reflected the shutdown of low-productivity plants as the 

industry adjusted to a lower market share. Despite this adjustment, TFP resumed its 

decline after 1984. Apparently, these fluctuations in TFP were not due solely to 

cyclical factors. 

In industry 3542, the post-recession TFP recovered rapidly and continued to 

rise through 1987. The sharp rise between 1983 and 1984 reflected downsizing of the 

capital stock, as well as increased orders. The strong recovery of TFP relative to 

industry 3541 occurred despite very modest improvements in labor productivity and a 

decline in capital productivity. 

The aggregate productivity measures plotted in Figures 4 and 5 fail to provide 
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important information about the structure of changes in TFP. Declines occur despite 

steady labor and factor productivity. Has there been some essential change in 

production technology that has decreased labor's marginal product? Furthermore, do 

changes in TFP reflect changes in the composition of the industry between high- and 

low-productivily plants or changes that affect all plants equally? These questions can 

only be addressed by a plant-level decomposition of changes in technology and 

changes in efficiency. 

Tables 10 and 11 provide traditional productivity statistics for plants by several 

attributes. Metropolitan plants are located in a Census-designated standard 

metropolitan statistical area (SMSA). Multi-unit plants are owned by firms that 

operate more than one plant. Large plants have total employment greater or equal 

to the median for that industry and year. High wage plants have higher average 

production worker wages than the median for that industry and year. 

Labor productivity is not always correlated with total factor productivity. 

These divisions raise questions relevant to the problem of productivity improvement. 

For example, if agglomeration economies contribute to productivity in the machine 

tool industry, then metropolitan plants might be more productive. If multi-plant firms 

benefit from economies of scope and plant specialization, then plants that are part of 

multi-unit firms might be more efficient. Wages might proxy for the level of worker 

skill; this would result in higher production for high-wage plants. For example, large 

plants in the industry 3541 ASM sample have higher TFP but lower labor 

productivity. 
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Table 10. Average plant productivity by selected plant attributes for metal-cutting 
machine tools 

Output/ Capital/ 
Labor Labor Output/ Total Factor 

Attribute Plants Output Hour Hour Capital Productivity 

Census Sample 

Metropolitan 973 4,344 12.27 12.95 1.15 0.002 

Non-
metropolitan 

175 4,764 11.13 12.71 1.09 -0.013 

Single unit 623 1,405 10.56 10.92 L13 -0.013 

Multi-unit 525 7,971 13.92 15.27 116 0.016 

Large 578 8,010 12.64 14.11 1.100 0.004 

Small 570 755 11.54 11.71 L18 -0.004 

High Wage 576 6,163 14.34 10.90 L16 0.006* 

Low Wage 572 2,640 9.84 14.91 113 -0.006* 

ASM Sample 

Metropolitan 1,721 9,219 14.16 14.27 1.36 -0.000 

Non-
Metropolitan 

311 10,830 12.49 14.20 1.20 0.001 

Single-Unit 555 3,003 11.51 12.20 1.32 -0.025 

Multi-Unit 1,477 11,893 14.81 15.03 1.34 0.009 

Large 1,023 16,811 13.61 15.04 116 0.004 

Small 1,009 2,017 14.21 13.46 1.51 -0.004 

High Wage 1,020 12,483 16.43 15.87 1.38 0.077* 

Low Wage 1,012 6,423 11.36 12.63 1.29 -0.077 

* denotes statistical significance at a = .05. 
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Table 11. Average plant productivity by selected plant attributes for metal-
forming machine tools 

Output/ Capital/ 
Labor Labor Output/ Total Factor 

Attribute Plants Output Hour Hour Capital Productivity 

Census Sample 

Metropolitan 518 3,164 11.66 14.47 1.73 0.018 

Non-
metropolitan 

124 3,096 10.61 13.20 1.13 -0.075 

Single unit 313 1,397 10.46 12.39 1.05 -0.002 

Multi-unit 329 4,820 12.40 15.97 2.14 0.002 

Large 322 5,559 12.09 15.35 2.20 0.010 

Small 320 728 10.81 13.09 1.03 -0.010 

High Wage 323 4,027 13.03 16.44 2.03 0.068* 

Low Wage 319 2,263 9.86 11.98 1.20 -0.069* 

ASM Sample 

Metropolitan 1,127 5,181 12.40 14.69 1.21 0.010 

Non-
metropolitan 

240 5,307 11.73 11.73 1.10 -0.046 

Single unit 425 2,134 10.98 12.45 1.24 -0.030 

Multi-unit 942 6,587 12.87 15.48 1.16 0.014 

Large 688 8,960 12.53 15.06 1.04 0.005 

Small 679 1,395 12.03 14.01 1.34 -0.005 

High Wage 687 7,138 13.69 16.85 1.05 0.049* 

Low Wage 680 3,248 10.86 12.21 1.32 -0.049 

* denotes statistical significance at a = .05. 
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Metropolitan plants typically have higher averages for labor and capital 

productivity, and a higher capital-labor ratio. However, differences in TFP are not 

significant. Either agglomeration economies are not important to productivity in the 

machine tool industry, or total factor productivity is too blunt a measure to reveal 

these differences. 

A limitation of total factor productivity as a measure of productive efficiency is 

that it cannot show how changes in overall productivity can be decomposed into 

changes in the technology and changes in relative efficiency. For example, consider 

the change in TFP from 1977 to 1982 in industry 3541. Several process likely 

contributed to the fall in total factor productivity during this period. First, as old 

capital equipment was replaced, the technology in the manufacture of machine tools 

advanced. However, because of problems with capital utilization, the total factor 

productivity did not reflect this shift in the production frontier technology. Technical 

efficiency measurement allows observation of the technology of the most efficiency 

plants-those that have modernized and have the greatest rate of capacity utilization-

and measures the remainder of the plants against this standard, rather than against 

the average for the entire industry. 

A reexamination of the relative efficiency of plants with different attributes, 

based on technical efficiency rather than total factor productivity, will reflect this 

difference in the methodologies and permit associated interpretations. In Chapter 7, 

changes in efficiency are decomposed into changes in technology and improvements 

in the efficiency of individual plants relative to a fixed standard. 
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Industrial Extension Participation Data 

The industrial extension services of Iowa, North Carolina, and Michigan 

provided names, addresses, and other identifying information for companies that had 

been provided with direct intervention from the extension service. These names and 

addresses were matched against the name and address file of the Longitudinal 

Research Database, which provides the permanent plant number, the record for 

linking the plant longitudinally over time. The matching process is imperfect; 

changes in name and other problems sometimes make a plant impossible to identify. 

Twenty seven plants was identified as industrial extension clients. With observations 

over a number of years, the total number of client observations was 39 in industry 

3541 and 17 in industry 3542. The total number of machine tool manufacturers in 

these states is 305 in industry 3541 and 106 in 3542. The majority of these plants is 

located in Michigan. The impact of this direct intervention on the efficiency of these 

plants can be assessed using data from the three states. Details on the results of the 

analysis are provided in Chapter 7. 

Only a small number of states provided data on the direct intervention of 

industrial extension (all industrial extension services that have operated since 1980 

were approached; those from Iowa, North Carolina, and Michigan were the only 

three that were both willing and able to provide plant level data). Therefore, a proxy 

variable was developed for use with the full data set to take advantage of the richness 

of the national data set, and to augment the assessment of industrial extension that is 

based only on data from three states. A plant is classified as having access to 
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industrial extension if there is an industrial extension service operating in the state in 

the given year. The data for each state are taken from Table 1 in Chapter 1. 

This environmental variable, while admittedly a poor proxy for actual 

extension service intervention, does control for activities of the extension services 

aside from direct intervention. For example, many extension services circulate 

newsletters, perform demonstrations, and hold workshops and seminars (Clarke and 

Dobson 1991). While most of these would not be considered direct interventions, 

they may contribute to the flow of information about technologies in the industry. 

Considering the importance of information in technology adoption and adjustment, 

and considering the number of states with extension programs for which data could 

not be obtained, the use of this pro;qr variable was a second best solution. 

Technology Adoption Data 

Technology usage data are extracted from the 1988 Survey of Manufacturing 

Technology (SMT). The SMT provides data from approximately 10,000 

manufacturing establishments about the use of 17 individual "advanced technologies." 

These technologies are general innovations primarily used in the design and 

production of manufactured products. The 17 technologies can be classified into five 

broad technology groups including design and engineering, fabrication/machining and 

assembly, automatic material handling, automated sensors, and communication and 

control. These data are merged with the LRD to develop a single data set containing 

both production and technology information. This data set is used to examine 
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patterns of technology adoption in the industry and to assess the impact of these 

technologies on technical efficiency. Chapter 7 provides detail about the specific 

technologies listed on the survey. 

Since only 62 of the machine tool plants in either the census or ASM samples 

were sampled in this survey, the methods for calculating technical efficiency scores 

were adapted to fit the small number of observations, as explained in Chapter 7. 
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CHAPTER 4. ESTIMATION 

Measurement of efficiency in production has been the subject of many 

methodological and empirical studies, for example, Farrell (1957), Fare, et al. (1985), 

Schmidt and Sickles (1984), and Caves and Barton (1990). A rich alternative of 

models and methods have been developed for measuring the efficiency of decision 

making units. For empirical analysis of efficiency measurement, choices in 

developing the associated model and estimation procedures must be made. These 

choices should reflect the details of the application, the available data, and the 

objectives of the analysis. This chapter will discuss these choices in reference to the 

particular application and data used for the machine tool industry. 

The chapter opens with a discussion of issues relevant to the choice between 

parametric and nonparametric analysis of technical efficiency. The cross section 

stochastic frontier model is then discussed, along with the implications of the 

necessary assumptions, and early variations of the basic model. Panel data models 

are explored as a way of relaxing the assumption necessary for the cross section 

model. The chapter concludes with a summary and plan for applying the 

methodologies discussed. 

Parametric and Nonparametric Analysis 

Determining the position of the frontier technology is the major point of 

controversy surrounding technical efficiency measurement. In his first analysis of 
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technical efficiency measurement (1957), Farrell acknowledged that few production 

relationships are simple enough to be represented by a theoretical engineering 

function. Rejecting this approach to finding the best-practice technology, he 

suggested instead the construction of the &ontier from observed data. Since that 

time, two competing methodologies for measuring efficiency have emerged: those 

utilizing linear programming techniques (the nonparametric approach) and identified 

with the work of Fare and his colleagues (1985), and those emphasizing econometric 

estimation (the parametric approach) and identified with the work of Aigner, Lovell, 

and Schmidt (1977). 

Nonparametric Approach 

Linear programming techniques for measuring technical efficiency were first 

proposed by Farrell (1957) and have been further developed by Chames, Cooper, and 

Rhodes (1978), and by Fare, Grosskopf and Lovell (1985). Often referred to as data 

envelopment analysis (DEA), this method constructs the frontier by finding a 

piecewise-linear, convex, weak-disposal hull that "envelops" the sample data; it is the 

smallest set that includes all of the observations in the sample and satisfies the 

properties of any well-behaved input set. In terms of the notation of the Chapter 2, 

technical efficiency is calculated in two steps; first, by constructing L(u) as described 

above, and second, by solving the associated programming problem: 
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F(x,u) = miniX: Xx e Isoq L(u)}. (4 1) 

Details on the formulation of the linear programming problem can be found in Lovell 

and Schmidt (1987). 

Proponents of the nonparametric approach argue that since no a priori 

assumptions are imposed on the form of the production function, the distribution of 

technical efficiency, or the correlation between efficiency and inputs, this method 

comes closer to defining the true frontier than parametric methods that require such 

assumptions. Furthermore, nonparametric analysis is possible even if few 

observations are available, whereas parametric approaches require large sample sizes 

(Lovell and Schmidt 1987). 

However, there are at least two major drawbacks to the linear programming 

approach to technical efficiency measurement. First, the frontier is deterministic; 

hence no allowance is made for variations from the convex hull for reasons other 

than efficiency, such as random external shocks, measurement error, omitted 

variables, etc. The constructed frontier is veiy sensitive to outliers in the sample 

data. Furthermore, since the frontier and efficiency measures are computed rather 

than estimated, no standard errors are produced and there is no way to make 

reliability statements about the shape and placement of the fi*ontier or the 

consistency of the estimators of technical efficiency. However, some progress has 

recently been made toward providing goodness of fit statistics for optimizing models 

such as DEA (Varian 1990). 
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Parametric Approach 

Early attempts to develop an econometric interpretation of Farrell's 

propositions include the Aigner and Chu (1968) deterministic frontier model. They 

suggested a Cobb-Douglas kernel with a technical efficiency term that entered 

multiphcatively: 

<3, = Axl^xi'V,, 

-

where U; is a random disturbance between 0 and 1. Taking logs, 

y, = « + Pi^ii + P2*2i + 

= a + + P2*2i - «<• 

(42) 

(4.3) 

where y^ is the log of output, a = InA, = In(Xy), and 6; s -Uj s In Uj; Uj is a non-

negative random variable. The "kernel" on the right hand side is deterministic; the 

error term is attributed entirely to inefficiency. In keeping with the Farrell 

framework defined earlier, technical efficiency, U, is the ratio QJQ' = U; s exp{-Ui}. 

The stochastic frontier, proposed independently by Aigner, Lovell, and 

Schmidt (1977), Meeusen and van den Broeck (1977) and Battese and Corra (1977), 

emerged as a response to criticism of existing methods that attributed aU deviations 

from the frontier to technical inefficiency. These criticisms fall under two headings. 

First, production itself, even if planned efficiently ex ante, is subject to random 

influences that are not under the control of the producer. These random events such 
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as equipment failures, weather, the quality of inputs, etc. should not be attributed to 

inefficiency. Second, errors in variable measurement, associated with technical 

inefficiency in a nonparametric or deterministic frontier framework, should not be 

counted as inefficiency. In order to separate the random components of deviation 

from the frontier from inefficiency, a two part composed error term was proposed. 

In keeping with the notation used above, consider a generalized single equation 

production function model: 

y, = F(X^;p) + exp(e^), ^44^ 
e. = V,. - . 

The first part of the composed error term, Vj, represents statistical noise, and is 

generally assumed to be normally distributed. The second part of the error, Uj, 

represents inefficiency, and was originally assumed to follow a particular one sided 

(positive) distribution. Recent developments allow these assumptions about 

distribution to be avoided and tested (and are discussed below). 

The parametric approach to finding the production frontier is intuitively 

appealing due to its allowance for the stochastic nature of production. This is the 

main benefit of the stochastic frontier method: deviations from the frontier are 

attributed to technical inefficiency only after random noise and measurement error 

are appropriately and systematically reflected. 

However, this benefit of the parametric method does have a cost. A number 

of restrictive assumptions are required for stochastic frontier estimation: a functional 
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form for the production function, an assumption on the distributions of both portions 

of the composed error term, and the assumption that the regressors (Xj) and 

inefficiency are not correlated. While assumptions on distribution of the error terms 

and orthogonality may be relaxed if panel data are available, the estimates still hinge 

on the assumed functional form, and how closely it approximates the underlying 

technology. 

Choice of Technique 

To summarize, the choice between parametric and nonparametric analysis of 

technical efficiency rests on a number of factors. The quality and quantity of data 

available are an important consideration. Data with significant noise or subject to 

excessive measurement error are not well suited to data envelopment analysis. If few 

data points are available, stochastic frontier estimation will have more limited 

properties. The availability of panel data adds to the appeal of stochastic frontier 

estimation, since some of the restrictive assumptions are avoidable. These include 

the error distribution assumption and the orthogonality assumption. Finally, the 

objectives of the analysis should be considered. If estimates of output elasticities of 

elasticities of substitution are required, parametric methods must be used. 

The comparative accuracy and usefulness of the two methods is an empirical 

question. Several studies have contrasted the methods (e.g.. Gong and Sickles 1991, 

and Sickles and Streitwieser 1991), and one conclusion is common to all ~ the 

reliability of the efficiency estimates from a stochastic fi-ontier model hinges on the 
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ability of the chosen functional form to approximate the underlying technology. 

Several functional forms should be tested for fit when the stochastic frontier method 

is employed. 

A number of factors are supportive of the stochastic frontier approach for this 

analysis of the machine tool industry. First, panel data are available, and the number 

of observations for each industry is relatively large, as shown in Tables 3 and 4 in 

Chapter 3. Second, the Census of Manufactures and Annual Survey of Manufactures 

data are quite likely to contain measurement errors due to imputation, transcription 

error, and error by respondents. The stochastic frontier methodology is more likely 

to screen out the errors. Finally, the data construction approaches imply variations 

with concept and reality that are likely to introduce other sources of measurement 

error. 

The Basic Stochastic Frontier Model 

Several refinements of the stochastic fi'ontier production function model in the 

preceding section have more recently appeared in the econometric literature. These 

innovations in modeling can be classified by the type of data used to estimate them: 

cross section or panel data. The original models were formulated for cross section 

data; applications to panel data are more recent. In this section, the original model 

and estimation methods applicable to cross section data are reviewed. 
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The Original Model 

Aigner, Lovell and Schmidt (1977) began with the basic stochastic frontier 

production function model: 

Yf = F(X.;P)exp(€.), 

G, = V. - w., (4.5) 

TE = exp(-M,). 

where Y, and are in levels. The multiplicative error term, exp(e), is composed of 

Vj, the log of random deviations from the stochastic frontier, and -Uj, the log of 

technical efficiency. The range of Vj is not restricted, but Uj is restricted to be greater 

than or equal to zero. Hence, technical efficiency has a range defined as TE e (0,1]. 

A score of one indicates that the production unit is on the frontier; as technical 

efficiency approaches zero, Uj becomes large, diminishing production. 

Aigner, Lovell, and Schmidt used maximum likelihood estimation (MLE), with 

the following assumptions on the distribution of each element of the disturbance 

term, and the correlation between the regressors and the disturbance: 

Vj - iV(0,oJ), 

~ 0-

Uj has a normal distribution truncated at zero from below. The log likelihood 

function was derived for this set of assumptions, producing estimates for S, the e;, 

and p (the ratio of a\ to 
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The slope parameters can be estimated consistently using ordinary least 

squares (OLS), although these estimates are inefficient compared to the maximum 

likelihood estimates (Greene 1992). However, since the expectation of the composed 

error term is less than zero, the intercept cannot be estimated consistently with OLS. 

As demonstrated by Greene (1980), the moment equations of the residuals can be 

used to correct the constant term and derive estimates of the variance components. 

Because the residual InY; - lnF(Xj;S) estimates not Uj, the firm level 

efficiency estimates must be determined indirectly. Under the assumptions set out in 

the basic model, Jondrow and his colleagues (1982) derived an explicit form for the 

conditional expectation of U;, given 6;: 

where <}) (.) is the standard cumulative normal density function and $(.) is the 

standard normal distribution function. This estimate of u is unbiased, but is not 

consistent. While the estimate of the entire residual, V; - U; is consistent, the variance 

of ûj alone remains nonzero regardless of the number of observations. No 

improvement has been made on this measure in the context of a cross section single 

equation framework. 

Within the limits imposed by cross section data, most variations of the basic 

model have modified the distribution of the one sided component of the disturbance; 

models assuming exponential, gamma, and truncated normal distributions with means 

<i>(gp/q) 

^2 1^ 1  - $(6p/a) 
(4.7) 
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other than zero have been developed. Greene (1992) provides a review of these 

variations, specifying the log likelihood functions as well as the moment equations 

and intercept corrections for corrected least squares. Kopp and Mullahy (1990) 

explore the generalized method of moments technique for frontier estimation which 

requires fewer distribution assumptions. However, this method does not produce 

definable estimates of U;, and so is not considered a viable alternative for the 

estimation of technical efficiency. 

Panel Data Models 

Several deficiencies of the basic stochastic frontier model have been noted: 

first, that the estimate of U; is not consistent; and second, that strong assumptions on 

the distribution of the error terms and correlation between the errors and the 

regressors are required. Schmidt and Sickles (1984) have shown that if panel data 

are available, consistent estimates of Uj can be obtained that do not depend on the 

distribution or correlation assumptions required for the cross section model. In this 

section, two types of panel data models and estimators of technical efficiency are 

described: those assuming technical efficiency is constant over time, and those 

allowing technical efficiency to vary over time. 

Assuming N firms are observed over T periods, the panel data model can be 

written: 
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= F%;P)exp(V(, -

i = 1,2,..., AT (4-8) 

t = 1,2, ...,T 

The model can be restricted by the assumption that Ujt = u/ that is, while technical 

efficiency is specific to each firm, it does not vary over time. Assuming that the Uj 

are random variables, the model can be estimated by the method of maximum 

likelihood or feasible generalized least squares (FGLS). If the Uj are treated as firm 

specific constants, rather than random variables, then a fixed effects model is used, 

and a least squares dummy variable (LSDV) estimator is employed. The 

instmmental variables method of Hausman and Taylor (1981) can be used when 

technical efficiency is treated as a firm-specific constant, but other firm-specific 

effects appear in the model as well. 

If the assumption that u,; = u, is not feasible, then additional parameters can 

be specified that allow technical efficiency to vary over time in a particular way; these 

parameters can be added to the specification for any of the four aforementioned 

estimators. Allowing for variations in efficiency over time provides a method for 

analyzing changes in relative efficiency when the frontier technology has remained 

constant. 

Time Invariant Technical Efficiency 

Begiiming with maximum likeh'hood estimation, which requires the greatest 
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number of assumptions, the assumptions are relaxed, and the estimation method 

appropriate to each set of assumptions is described. Specification tests that facilitate 

the choice among these models are then presented. 

Maximum likelihood estimation. The application of maximum hkelihood 

methods to panel data stochastic frontier models was first accomplished by Pitt and 

Lee (1981). They maintained the following assumptions: 

In keeping with the assumptions of the basic model, f(.) is concentrated on (-œ, oo), 

while g(.) is concentrated on [0, »). With €;( = Vj^ - Ujt, the joint density of (6% ...6;^) 

is 

Vit ~ iid with density f(v); 

Uit ~ iid with density g(u); 

Ujt, Vjt, independent of each other; 

Ujt, Vj,, independent of the regressors. 

" T 

/i(€.p...6,.,)=J g(«)II/(e^ + u)du. 
0 

(4.9) 

and the likelihood function is 

N 
(4.10) L = n A[y., -MpP). •••' I'ir 

1=1 

Maximizmg this equation gives estimates of a, fi, and the parameters in the density 

functions of u and v. 
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Battese and Coelli (1988) derived the analogue to the Jondrow, et al. (1982) 

estimate of technical efficiency for panel data. This estimate is consistent as T œ. 

However, this is not a very useful property for two reasons: first, the assumption of 

fixed technical efficiency becomes less plausible as T rises; second, the availability of 

a large number of time periods is not a likely situation. 

Generalized least squares. Maintaining assumptions that the regressors are 

not correlated with technical efficiency and are independent of each other, 

generaUzed least squares estimation can proceed without maintaining the distribution 

assumptions required under maximum likelihood estimation. Technical efficiency is 

still assumed to be a random variable, but its distribution is not fully specified. 

Where the variance components are not known, they can be esthnated using the 

usual procedure for feasible generalized least squares (FGLS) (Greene 1990). 

Efficiency for a specific plant can be captured as the mean of the residual over time, 

and then normalized so that the most efficient firm is counted as 100% efficient. The 

index of efficiency adjusts for the log form of the equation: 

"i - ijSl % 
Z\ . (4.11) 

u^ = max(u,.) - M, 

TE = 100eq)(-((.). 

Estimates of the Uj are consistent as T oo, given the consistency of S; the assumption 

that the most efficient firm is 100% efficient is true as N becomes large. Estimates 
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of S are consistent as N ^ oo; hence estimates of Uj are consistent as N and T ^ 

Fixed effects model. Problems arise with the maximum likelihood and FGLS 

estimators if the assumption that the regressors and U; are not correlated is called 

into question. One way to avoid this assumption is to employ a fixed effects model 

estimated by the least squares dummy variable method (Hsiao 1986). This model can 

be written as 

where a/ is a scalar constant representing the effects of variables particular to firm i 

in the same fashion over time. Tlie Vj^ still represents the normal random residual, 

but the oi' is treated as a constant. 

Estimation proceeds as usual for a fixed effects model, with a least squares 

dummy variable (LSDV) estimator. That is, either a dummy variable is included for 

each plant, or, if the number of cross sections is large, the data are transformed by 

mean différences (Hsiao 1986). The firm effects are separated from the overall 

intercept through normalization, as described above for the FGLS model. If aj is the 

estimate of the intercept for firm i, then. 

% - * PX * "a. (4.12) 

ûj = max(â^) - â, 

TE = lOOexp(-ûj). 
(413) 

While the LSDV estimate of the fi is unbiased and consistent as either N or T 
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-> 00, the estimators for the individual intercepts are consistent only as T -* ». As N 

gets large, the overall intercept can be separated consistently from the one-sided 

individual effects, allowing measurement of efficiency relative to an absolute 

standard. Hence, consistency of the individual efficiencies requires large T and N. 

Use of the fixed effects model has an important drawback: all time invariant 

variables are swept into the individual firm intercept. Thus, firm specific, but time 

invariant factors besides technical efficiency cannot be separated from technical 

efficiency. For example, if the capital stock for a given plant is fixed over time, the 

fixed effects model cannot separate the fixed effect of the capital stock from the fixed 

effect of technical efficiency. Hence, if observed time invariant independent variables 

are important in the production process, the LSDV estimates may be biased. 

Furthermore, the LSDV estimator may not be as efficient as either MLE or FGLS 

estimators, because it does not take advantage of variation between cross section 

units. 

Instrumental variables. Hausman and Taylor (1981) responded to the above 

criticisms of the fixed effects model by developing an estimator that allows 

unobserved fixed effects (i.e., technical efficiency) to be separated from observed 

factors that do not vary for a single cross section over time (i.e., capital stock, in the 

example above). The model can be written as 

y-it = 

where Uj is treated as a fixed effect, and Z represents a vector of independent 
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observed variables that are fixed for a particular plant over time. Some of the 

columns of both Xjj and Zj are assumed correlated with the Uj. The columns of Xjt 

that are not correlated with U; can serve two functions because they vary both across 

time and cross sections. First, they can produce unbiased estimates for the fi using 

deviations from the individual means; second, the individual means can be used to 

provide instruments for the columns of Zj that are correlated with the U;. 

Once the instruments are found, technical efficiency estimation proceeds in the 

same manor as FGLS estimation. These estimates are consistent as T and N -» ». 

Specification Tests 

Deciding between the estimators described above involves testing the 

maintained assumptions. Several specification tests are useful in this respect. The 

Hausman test (1978) can be used to test either correlation assumptions, distribution 

assumptions, or both simultaneously. The Hausman test statistic is based on the 

assertion that under the null hypothesis of no misspecification, there will exist a 

consistent, asymptotically normal and asymptotically efficient estimator, fi. Under the 

alternative hypothesis of misspecification, S will be biased and inconsistent. 

Hausman's test involves finding another estimator b, which is consistent under both 

the null and alternative hypothesis. Under the null hypothesis, b will be inefficient, 

since S is the minimum variance estimator; b will not attain the asymptotic Cranier-

Rao lower bound. The test consists of analyzing the difference q = b - S under the 

null and alternative hypotheses. Under the null hypothesis of no misspecffication 
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plim q = 0 while under the alternative hypothesis of misspecification plim q * 0, and, 

if the power of the test is high, q will be large in absolute value relative to its 

standard error (Fomby et al. 1984). 

For example, consider the choice between a fixed effects and random effects 

model. Recall that a random effects FGLS estimator requires the assumption that 

the regressors and errors are orthogonal, while the LSDV estimator of the fixed 

effects model eliminates this assumption. The specification test can be stated: 

Under the null hypothesis, both the FGLS and within estimators are consistent, but 

the within estimator is inefficient. Under the alternative, the within estimator is 

consistent, but the FGLS estimator is not. The test statistic is 

where b is the FGLS estimator, fi is the FGLS estimator, and k is the number if 

slope parameters. Large values of W place doubt on the null hypothesis, providing 

evidence that the regressors and the error term are correlated. This finding suggests 

that a fixed effects model or a Hausman estimator may be more appropriate than 

either maximum likelihood or FGLS estimators of the Uj. 

Similarly, the distribution assumptions can be tested with the Hausman test by 

Ho: E[X^^u^ = 0] 

Ha: * 0]. 
(4.15) 

W  = [ $  -  P ] [ v a r ( ^  -  -  0 ] /  

^ 

(4.16) 
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comparing the MLE with the FGLS estimator, provided the assumption of 

orthogonality is maintained, since it is required for correct specification for both the 

MLE and FGLS estimator. Distribution and orthogonality can be tested jointly by 

comparing the MLE estimates with the LSDV estimates from the fixed effects model. 

The significance of the variance of technical efficiency estimate with respect to 

the total variance can be tested with a lagrange multiplier test (Breusch and Pagan, 

1980): 

Ho: = 0 

Ha: o„ *• 0. 
(4.17) 

The test statistic is 

A, = NT 

N 

E 

( T \2 

/ 
2(r-i) N T 

EE''"' . <=i t=i 

\2 

- 1 
(418) 

Large values of X imply that the numerator of the term in brackets is greater than the 

denominator. Under the maintained hypotheses that the Vj^ are independent across 

time and cross section, and that the Uj are independent from each other and from the 

Vit, the numerator can only be greater than the denominator if the Uj have nonzero 

variance. Another test of the significance of the one sided component of the error 

term can be derived from moments of the least squares residuals. Without 
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inefficiency in the model, the disturbance will be symmetric and normally distributed. 

Hence, deviations from symmetry and from the kurtosis of the normal distribution 

can be used to detect non-normality. Greene (1990) derives the Wald statistic for 

testing normality. The test statistic is 

W = n h » % " 
6 24 

where /bj is the estimate of skewness and b2 is the estimate of the kurtosis. Large 

values of W place doubt on the hypothesis of normality of the OLS residuals. 

Time Varying Technical Efficiency 

Each of the estimators described above for panel data models maintains the 

hypothesis that technical efficiency is constant over time. This assumption is difficult 

to justify in light of the fact that consistency of each of the estimators requires T -» », 

as well as N 00, Over a longer time period, it becomes more likely that technical 

efficiency for a given firm will change. Improvements over time may be due to 

investment in new capital, research and development, or the acclamation of workers 

to new manufacturing processes. Technical efficiency can also decline over time, if 

the relevant frontier shifts out but the individual firm does not take advantage of the 

advance in technology. 

This concern has been addressed by Comwell, Schmidt, and Sickles (1990) by 

specifying technical efficiency as a quadratic function of time: 
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«ir = Yi + 5/ + 8/^ (4.20) 

The parameters y, ô, and 0 can be estimated along with the S and variance 

components by either fixed effects, FGLS, or Hausman estimators presented above. 

Battese and Coelli (1991) specified a different functional form. Let: 

where T is the number of time periods. Maximum likelihood estimation proceeds in 

the same way as in the time invariant TE models, with the required adjustments to 

the log likelihood function, Battese and Coelli derive the estimator of technical 

efficiency analogous to their time invariant estimator presented earlier. 

Note that the exponential specification of the behavior of the firm effects over 

time is a rigid parameterization. The technical efficiency must either increase at a 

decreasing rate (» > 0), decrease at an increasing rate < 0), or remain constant 

(n = 0). A two parameter specification could be helpful, and it is currently being 

developed by Battese and Coelli. 

®xp(v^, - «a) 

«it = 

na = exp(-Ti(?-7)), 

(4.21) 

Summaiy 

Building a model for the estimation of technical efficiency involves a number 

of choices and modeling decisions. First, the choice must be made between statistical 
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and nonparametric methods. This choice must be based on the particular 

application, the characteristics of the available data, and personal choice of the 

researcher. Given the choice of a statistical methodology, the preferred model 

depends on whether panel data are available. Without panel data, estimates of 

technical efficiency are inconsistent, and hinge on strong assumptions. If panel data 

are available, many of these assumptions can be dropped, and the particular 

estimator that is best suited to the data can be found by testing these assumptions. If 

a long time series of data are used, models that allow technical efficiency to change 

over time should be considered. 

For this study, the following procedures will be followed. First, functional 

form will be investigated by estimating both transcendental logarithmic (translog) and 

Cobb-Douglas production functions, and testing the restrictions imposed by the Cobb-

Douglas form. Given the functional forms selected, fixed effects, generalized least 

squares, and maximum likelihood estimators will be produced. The specification tests 

described above will be used to determine the appropriateness of the assumptions 

implied by each estimator. The technical efficiency estimates from each procedure 

will be correlated to determine the impact of different assumptions on the technical 

efficiency estimates. 

The stochastic frontier method produces estimates of the best practice 

technology, as well as technical efficiency estimates. The parameter estimates of the 

frontier technology will be used to note variations in the production technology over 

time and between industries. The technical efficiency estimates will be used as a 
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performance variable for evaluating the comparative performance of different groups 

of plants over time. These comparisons lead to observations about the conditions 

amenable to efficient production. 
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V. EMPIRICAL RESULTS I 

In this chapter, results from four sets of specification tests and preliminary 

estimation are reported. The first section reports the results from tests of functional 

form specification, orthogonality, and the error term specification. These results 

motivate the use of a Cobb-Douglas production function, estimated by the method of 

maximum likelihood. The second section reports results from estimation of the 

stochastic frontier production function for each of the four data sets described in 

Chapter 3. Hypothesis tests of the parameters of the model are reported, and the 

estimates of the accepted frontier models are compared with the average ordinary 

least squares (OLS) production functions. Section three discusses the possibility of 

parameter instability across time, and Chow tests are performed to determine how 

the data should be partitioned for estimation. Section four reports the results from 

estimation of separate production functions for each data partition. Hypothesis tests 

are used to select the appropriate model for each time period, industry and sample. 

Frontier production functions are compared to the average OLS production functions. 

In the final section, the implications of the results for the distribution of the technical 

efficiency estimates are discussed. 
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Specification Test Results 

Functional Form 

Given the choice of the stochastic frontier methodology, a specific functional 

form must be chosen. Flexible forms were considered for the analysis. Flexible 

functional forms can be interpreted as second order numerical or differential 

approximations to the true function, whereas the traditional constant elasticity of 

substitution (CES) and Cobb-Douglas technologies are only first order 

approximations. A flexible forms is therefore less likely to lead to biased technical 

inefficiency estimates for industries with production functions that depart substantially 

from CES or Cobb-Douglas technology, which place severe limitations on the 

technology. Furthermore, estimates of flexible forms provide all of the economically 

relevant information about a technology: the level of production, the vector of 

marginal products, and the matrix of elasticities of substitution (Chambers 1988). 

The transcendental logarithmic (translog) form has received a great deal of 

attention and application in empirical work. While it shares second-order 

approximation properties with other flexible forms, the translog has the fewest free 

parameters, and estimates of the parameters tend to converge more quickly than 

estimates from other forms (Nguyen & Reznek 1991). Furthermore, Guilkey, Lovell, 

and Sickles (1983) have compared the results of estimation of a known technology for 

the translog, the generalized Leontief, and the generalized Cobb-Douglas and have 

found the translog as reliable or more reliable than the other two forms. However, 
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the translog form has special limitations. Second order approximation properties for 

the translog hold only locally. Furthermore, some researchers have raised theoretical 

objections to the translog because it need not be theoretically consistent; that is, it 

carmot represent globally convex isoquants (Chambers, 1988). 

Testing Procedure 

The choice between the Cobb-Douglas and translog forms was based on two 

criteria: the significance of the secondary coefficients, as revealed by the 

specification tests, and the impact of the change in functional form on the estimated 

residuals. The three factor (capital, labor, and materials) translog production 

function and its cost shares were estimated for each of the four data samples 

described in Chapter 3. Details of the derivation of the system are in Nguyen and 

Reznek (1991). The translog production function is 

InQ = «g + a^nL + aj^nK + o.JnM 

+ .Sa^lnL)^ + .Sa^j^ilnlCf + .5a JJnMf (5.1) 

+ ajJJnL * InK) + (tjJJnL * InM) + (tfJilnK * InM). 

The cost shares are 
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Sj = + aJnL + a^înK + ctjJnAfj , 

Sg = y[aj + CLyfnK + aJnL + ajgJnM^ , (5.2) 

^Af = {[«« + + «mM + ] • 

Homogeneity of degree k requires the following restrictions on both systems: 

«k + «, + 

«a + «« + «jb. = 0, 

0, 

«mm + ««/ + ««t = 0-

Rather than estimating the production function alone, the production function 

and share equations were estimated as a simultaneous system, in order to increase 

the degrees of freedom without adding to the number of free parameters (Bemdt 

1990). Because only two of the three cost share equations are linearly independent, 

one must be dropped from the estimation system. As explained in Chapter 3, the 

capital stock and capital cost measures are considered the least reliable components 

of the census data; hence, it is common practice when using these data to drop the 

capital cost-share equation (Nguyen and Reznek 1991). 

Two tests were performed to consider the importance of the use of the flexible 

form. First, the translog was tested against the Cobb-Douglas for the significance of 

the second order terms as a group. The tests were based on the Gallant-Jorgenson 
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analog of the likelihood ratio test (Gallant and Jorgenson 1979). The test statistic is 

T" = N * 5(a,K), - N * 5(a,lO« . (5-4) 

where S, and S^^ are the minimum values of the objective functions of the restricted 

and unrestricted models, respectively, and N is the number of observations. T° is 

distributed chi-square with degrees of freedom equal to the number of restrictions. 

The estimated disturbance covariance matrix from the unrestricted model was 

imposed in the restricted models, as required for the hypothesis tests. 

Theoretical consistency was also tested for the translog production function. 

Monotonicity requires that the estimated marginal products of inputs be non-negative, 

and convexity of isoquants requires that the principle minors of the bordered Hessian 

alternate in sign. These conditions were tested at the means of the samples, and at 

each data point. 

Finally, the residuals from the estimation of the two equations were tested for 

correlation. A high level of correlation between them indicates that the choice of 

functional form does not significantly affect the estimated residuals. Since the 

residuals, rather than the output elasticities and elasticities of substitution, are the 

focus of this study, practicality and parsimony would suggest that if these correlation 

are high, the simpler approach, a Cobb-Douglas form, should be adopted. 

Test Results 

Table 12 details the results of the likelihood ratio tests. In each case, the null 
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Table 12. Results of the likelihood ratio test to determine the functional form of 
the kernel of the stochastic frontier production function 

Industry Sample N*S(a,V)R N«S(a,V)u To* 
Pearson 

Corr. 

3541 Census 9897 2597 7300 .9045 

3541 ASM 18286 4551 13735 .9462 

3542 Census 4541 1432 3109 .9603 

3542 ASM 11794 3324 8470 .9464 

" The test statistic (T°) is compared to the critical value = 12.6. 

hypothesis that all second order terms were equal to zero was strongly rejected. The 

implication is that the output elasticities are not constant and that the elasticities of 

substitution are not equal to 1. However, the Pearson correlations between the two 

functional forms are very high for all samples, implying that restricting the technology 

had little effect on the residuals. 

Table 13 documents serious theoretical consistency problems with the 

estimated translog function. Although the monotonicity and convexity conditions held 

at the means for all samples, when tested at each observation, convexity was violated 

for 20 to 40 percent of the observations. The problem is most serious in the ASM 

samples. The implication of this result is that the translog form is allowing the data 

to reveal production relationships that are inconsistent with the theory of production. 

While some empirical researchers view this as an advantage to the translog form, 

others use nonconvexity as an example of the shortcomings of the translog form 

(Chambers 1988). 
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Table 13. Results of tests for theoretical consistency of the transcendental 
logarithmic production function 

Monotonicity Convexity 

Violation at Violations/ Violation Violations/ 
Industiy Sample Means Total Obs. at Means Total Obs. 

3541 Census no 27/1150 no 352/1150 

3541 ASM no 71/2034 no 854/2034 

3542 Census no 9/642 no 133/642 

3542 ASM no 31/1367 no 567/1367 

Considering the theoretical problems of applying the translog, the high level of 

correlation between the errors, and, most importantly, the considerable simplicity of 

the Cobb-Douglas form, the decision was made to use the Cobb-Douglas form. 

Significance of the One Sided Error 

Before the estimation of stochastic frontiers, evidence that technical efficiency 

exists was derived from the likelihood ratio test and the test for the skewness of the 

error. The results of these tests are shown in Table 14. The test statistic for the 

likelihood ratio test is distributed chi-square with 1 degree of freedom. The null 

hypothesis was that the variance of the half normal component of the error term was 

equal to zero. The null hypothesis was rejected for all samples except the metal-

cutting census sample. This finding was confirmed by the chi-square test for skewness 

of the least squares error. These results suggest that technical inefficiency, as it is 

defined here, is present for each industry and sample. 
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Table 14. Results of specification tests for the stochastic frontier production 
function 

Industry Sample Likelihood Ratio 
(A) 

Skewness (W) Orthogonality 
(W) 

3541 Census 2.657 4.206 8.034 

3541 ASM 272.926 379.420 9.447 

3542 Census 7.093 12.950 2.091 

3542 ASM 177.049 306.127 12.369 

Critical Value (a = .05) 7.810 5.990 3.840 

Choice of Estimator 

The fixed effects least squares dummy variable, feasible generalized least 

squares, and maximum likelihood estimators were estimated for each panel sample 

(i.e. the final samples with single time-period plants removed ~ see Tables 3 and 4). 

Specification tests were performed on these samples to determine the appropriateness 

of the assumptions of each estimator. Recall that both maximum likelihood and 

feasible generalized least squares require the assumption that the regressors and 

errors are orthogonal. The results of Hausman's test of this assumption are shown in 

the last column of Table 14. For each of the samples, the orthogonality assumption 

is violated, except for the 3542 census sample. Griliches noted that correlation 

between inputs and errors might indicate that producers are aware of their efficiency 

levels, and that their input allocations may be influenced by this knowledge. If this is 

true, the estimates of the elasticities and the residuals may be biased (Griliches 
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1957). The fixed effects estimator is probably a more appropriate estimator than 

either the FGLS or MLE estimators. 

For the purposes of this study, the influence of the estimation technique on 

the technical efficiency estimates and the plant rankings based on technical efficiency 

is the most important consideration. Technical efficiency estimates were output for 

the panel samples, and correlations between the MLE, FGLS, and fixed effects 

estimators were calculated, as shown in Table 15. Two sets of correlations are 

shown. The first three columns of Table 15 indicate the correlations between the 

technical efficiency estimates for the different estimators, and the second three 

columns contain correlations between the technical efficiency ranks resulting from 

each estimation. 

The correlations show that the MLE and FGLS estimates of technical 

efficiency are closely correlated in most samples, indicating that the distribution 

assumptions imposed by the MLE have little effect on the estimates. This is 

particularly true of the ASM samples. Although the correlations for the census 

sample are lower, the rank correlations are so high that the order of plants is affected 

very little by imposing distribution assumptions. 

Correlations between the LSDV estimator and the FGLS estimator reflect the 

impact of the orthogonality assumptions on the technical efficiency estimates. These 

correlations are very high for all samples, except for the metal cutting census sample. 

Although the Hausman test resulted in rejection of the orthogonality hypothesis, this 

restriction seems to have very little impact on the estimated results. 
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Table 15. Pearson correlation coefficients between technical efficiency scores and 
ranks from three estimators^ 

Technical Efficiency Rank 

Estimator MLE FGLS LSDV MLE FGLS LSDV 

3541 Census 

MLE 1.000 0.904 0.806 1.000 0.988 0.881 

FGLS 0.904 1.000 0.919 0.988 1.000 0.901 

LSDV 0.806 0.919 1.000 0.881 0.901 1.000 

3541 ASM 

MLE 1.000 0.981 0.953 1.000 0.994 0.957 

FGLS 0.981 1.000 0.962 0.994 1.000 0.973 

LSDV 0.953 0.962 1.000 0.957 0.973 1.000 

3542 Census 

MLE 1.000 0.805 . 0.771 1.000 0.988 0.953 

FGLS 0.805 1.000 0.971 0.988 1.000 0.957 

LSDV 0.771 0.971 1.000 0.953 0.957 1.000 

3542 ASM 

MLE 1.000 0.986 0.962 1.000 0.997 0.958 

FGLS 0.986 1.000 0.960 0.997 1.000 0.958 

LSDV 0.962 0.960 1.000 0.958 0.958 1.000 

^Standard errors of the estimates are not provided because all estimates are 
significant at a = .01. 

For the sake of simplicity, one estimator was chosen for the entire analysis. 

Based on the orthogonality test, it appears that the fixed-effects estimator is the most 

appropriate. However, the fixed effects model has the important disadvantage of 

eliminating from the analysis plants that appear in only one year. Since the 

correlations are so high between the three estimators and especially between the 
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ranks they produce, the maximum likelihood estimate will be used for the remainder 

of the analysis, and a time varying specification that allows for unbalanced panels will 

be applied. 

Summaiy-Model Choices 

The test results and discussion of the previous section led to the decision to 

estimate a stochastic frontier model with a Cobb-Douglas kernel by the method of 

maximum likelihood with parameters allowing for time variation. The model is 

ln(Ç) = Po + Piln(L) + p^In(Aj) + Pj^ln(IO + " "(r 

"ù = = (exp[-r](t-7)])u, 

~ u.d. N(0,a^ 

~ |//(n,o2)| 

t 6 SCO; i = 

where Q, L, M, and K are the output, labor, materials, and capital as described in 

Chapter 3, r) is an unknown scale parameter, and Sf represents the set of Tj time 

periods for which observations for the ith firm are obtained. Note that since the Uj 

are distributed truncated normal, is not the variance of U;; rather, it is the variance 

of the normal distribution which is truncated at zero to obtain the distribution of the 

non-negative firm effects. The variance of U; is given by 
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(5.6) 

where 0(*) and $(•) represent the density function and the distribution function for 

the standard normal (Battese and Coelli 1991). The variance of Uj is smaller than 

and the parameter y is roughly proportional to the share of the total error variance 

attributable to the variance of the firm effects. As y approaches 1, a larger share of 

the total variance of the error is explained by the variance of the one-sided 

distribution from which the U; are taken. 

The logarithm of the likelihood function for Equation 1, as derived by Battese 

and Coelli (1991), is 

- l)h(l - Y) - + (1,1, - 1)V] 
2 i-1 2 f.i (5.7) 

- Ann[l - $(-%)] - -Nz^ + èln[l - $(-%/)] 
2 i.i 1-1 

+ z, - [—-—n—] ' 
(1 - Y)a, 

where 
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0 = (P^,o\Y,n,ny, z = 

[1(1 - Y) - Yn<(y, - *iP) (5.8) 

(Y(I - y)O?[1 + (nfn, - i)Y])'^ 

The negative of the log likelihood function is minimized, using the program 

FRONTIER 2.0 (Coelli 1991). 

A grid search routine is used to supply starting values to the iterative 

minimization process. In order to simplify the grid search, the model was 

reparameterized: 

Since the parameter y must lie between 0 and 1, it provides a convenient range over 

which the grid search can proceed. 

The FRONTIER routine uses the Davidson-Fletcher-Powell quasi-Newton 

method of minimizing the negative of the log of the likelihood function. When the 

change in the log of the likelihood function and each of the parameters was less than 

.00001, the model was considered converged. For several models, a problem with 

convergence required reducing that criteria to .0001. 

(5.9) 

Model Results-Pooled Data 

Equation 5.5 was estimated using four samples over the entire data period. 
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For each sample set, five models were estimated to facilitate parameter tests. Model 

1 is the um-estricted time varying stochastic frontier model, as specified in equation 

5.5. Model 2 is a special case of Model 1 in which the Uj have a half normal 

distribution; that is, fi is restricted to zero. Model 3 restricts r; to 0, forcing the 

technical efficiency score to be the same for a given plant across years. Model 4 is 

the time invariant case with a half normal distribution, and Model 5 is the standard 

production function in which all plants are assumed to be fully technically efficient 

(i.e, the plant effects, Uj, are absent from the model); these are the OLS estimates. 

Estimation results for the five models are presented in Tables 16 and 17; 

standard errors are in parentheses. Hypotheses of the significance of the parameters 

of the distribution of the plant effects were tested with the generalized likelihood 

ratio statistic. Tables 18 and 19 contain the relevant test statistics for each of the 

hypothesis tests. For each test, the unrestricted model (Model 1) is assumed under 

the null hypothesis. The hypothesis that all parameters of the distribution of the 

plant effects (uJ jointly are equal to zero is tested by comparing the log of the 

likelihood function for Model 1 and Model 5. For both industries, the null hypothesis 

is rejected and the existence of firm effects is indicated. 

The joint null hypothesis that the plant effects are drawn from a half normal 

distribution and that efficiency does not vary over time is tested by comparing the log 

of the likelihood functions for Model 1 and Model 4. This joint hypothesis also is 

rejected for both industries. 

To test the hypothesis that the Uj are distributed half normal, the log of the 
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Table 16. Maximum likelihood estimates for parameters of stochastic frontier production functions in the machine 
tool industry, metal-cutting type 

Census ASM 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

1.180 1.294 1.361 1.372 1.226 2.012 1.840 2.963 2.040 1.598 
(0.035) (0.063) (0.053) (0.065) (0.051) (0.089) (0.063) (16.45) (0.071) (0.045) 

0.350 0.304 0.338 0.330 0.330 0.353 0.404 0.480 0.461 0.430 
(0.041) (0.021) (0.021) (0.021) (0.021) (0.023) (0.030) (0.018) (0.018) (0.016) 

0.434 0.440 0.428 0.431 0.436 0.551 0.538 0.529 0.526 0.544 
(0.008) (0.015) (0.014) (0.015) (0.014) (0.014) (0.012) (0.013) (0.012) (0.010) 

0.237 0.258 0.229 0.233 0.230 0.090 0.053 0.004 -0.002 0.024 
(0.028) (0.028) (0.018) (0.018) (0.018) (0.016) (0.023) (0.013) (0.014) (0.012) 

0.098 0.145 0.490 0.120 0.102 0.131 0.249 0.116 0.208 0.106 
(0.016) (0.010) (0.119) (0.010) (0.009) (0.010) (0.005) (0.017) 

Y 0.090 0.426 0.819 0.238 0 0.534 0.744 0.420 0.649 0 
(0.248) (0.080) (0.047) (0.087) (0.035) (0.028) (0.033) 

M 0.323 0 -3.257 0 0 0.733 0 1.393 0 0 
(0.089) (1.158) (0.082) (16.465) 

V -0.236 -0.049 0 0 0 -0.035 -0.041 0 0 0 
(0.006) (0.039) (0.012) (0.025) 

Ln(L) -248.656 -280.871 -310.061 -312.100 -314.956 -326.536 -398.591 -407.588 -451.294 -597.764 
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Table 17. Maximum likelihood estimates for parameters of stochastic frontier production functions in the machine 
tools industry, metal-forming type 

Census ASM 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

Po 1.613 1.485 1.486 1.512 1.268 2.306 2.029 2.092 2.072 1.426 
(0.085) (0.106) (0.086) (0.101) (0.081) (0.103) (0.099) (0.090) (0.090) (0.052) 

/3L 0.380 0.414 0.436 0.427 0.413 0.457 0.487 0.472 0.475 0.491 /3L 
(0.034) (0.408) (0.032) (0.032) (0.031) (0.038) (0.049) (0.022) (0.021) (0.019) 

0.460 0.447 0.443 0.448 0.463 0.460 0.046 0.478 0.467 0.490 
(0.024) (0.023) (0.023) (0.024) (0.023) (0.014) (0.018) (0.016) (0.014) (0.013) 

PK 0.150 0.147 0.128 0.132 0.136 0.037 0.028 0.033 0.030 0.042 PK 
(0.023) (0.025) (0.023) (0.023) (0.023) (0.030) (0.039) (0.017) (0.016) (0.014) 

0.164 0.192 0.502 0.161 0.126 0.151 0.214 0.130 0.227 0.097 
(0.023) (0.014) (0.144) (0.017) (0.016) (0.019) (0.025) (0.023) 

Y 0.418 0.512 0.797 0.350 0 0.665 0.737 0.562 0.746 0 
(0.096) (0.056) (0.070) (0.088) (0.029) (0.049) (0.083) (0.028) 

0.408 0 -2.339 0 0 0.590 0 0.387 0 0 
(0.139) (0.994) (0.095) (0.140) 

n -0.060 -0.043 0 0 0 -0.037 -0.026 0 0 0 
(0.012) (0,041) (0.020) (0.036) 

Ln(L) -208.152 -218.737 -234.895 -237.004 -243.042 -137.053 -171.425 -186.194 -188.546 -340.163 
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Table 18. Tests of hypothesis for parameters of the distribution of plant effects, 
Ujt, in the machine tool industry 

Census ASM 
Industry/ I — 
Assumptions ^^11 Hypothesis % o.9s % Stat. Decision x Stat. Decision 

Industry 3541 

Model 1 f = H = r) = 0 7.81 132.600 Reject 542.456 Reject 

Model 1 M = TJ = 0 5.99 126.888 Reject 249.516 Reject 

Model 1 M = 0 3.84 64.430 Reject 144.110 Reject 

Model 1 n = 0 3.84 122.810 Reject 162.104 Reject 

Industry 3542 

Model 1 y = n = r\ = 0 7.81 69.780 Reject 406.220 Reject 

Model 1 H = T} = 0 5.99 57.704 Reject 102.986 Reject 

Model 1 M = 0 3.84 21.170 Reject 68.744 Reject 

Model 1 ri = 0 3.84 • 53.486 Reject 98.292 Reject 

likelihood function is compared for Model 1 and Model 2. Finally, the hypothesis 

that technical efficiency does not vary over time is tested by comparing the log 

likelihood for Model 1 with Model 3. As indicated in Table 18, the null hypotheses 

were rejected in each case; Model 1 was preferred over the more restricted models in 

each sample. 

Frontier versus Average Production Functions 

While Model 1 represents the frontier production function, Model 5, the OLS 

estimate, represents the "average" production function. The differences between 

Models 1 and 5 provide clues regarding the distinction between "best practice" 
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Table 19. Returns to scale, output elasticities, and cost.shares for frontier versus 
average technology for both industries and samples 

Industry 3541 Industry 3542 

Census ASM Census ASM Sample 

Frontier Average 
Model 1 Model 5 

Frontier Average 
Model 1 Model 5 

Frontier Average 
Model 1 Model 5 

Frontier Average 
Model 1 Model 5 

X 1.021 .996 .994 .998 .990 1.012 .954 1.023 

.350 .330 .353 .430 .380 .413 .457 .491 

6M .430 .436 .551 .544 .460 .463 .460 .490 

6K .237 .230 .090 .024 .150 .136 .037 .042 

SL .343 .331 .355 .431 .384 .408 .479 .480 

.421 .438 .554 .545 .465 .458 .482 .479 

SK .232 .231 .091 .024 .152 .134 .039 .041 

^K/SL .676 .698 .256 .056 .396 .328 .081 .085 

^L/SM .815 .756 .641 :791 .826 .891 .994 1.002 

technology and "average practice" technology (F0rsund and Jason, 1977). Table 19 

provides a summary of the technology differences between Models 1 and 5 in each of 

the four samples. The parameter k represents the sum of the output elasticities, or 

returns to scale. Since the function is homogeneous of degree A,, dividing the output 

elasticities for each input by X provides that input's cost share. 

The information in Table 19 is illustrated by plots of the frontier and average 

production technologies in Figures 6 through 9, The relationship between labor and 

materials is plotted for each technology, for the average value of output and the 

average capital stock for the given sample. 
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Figure 6. Frontier versus average technology for metal-cutting machine tools, 
census sample 
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Figure 7. Frontier versus average technology for metal-cutting machine tools, 
ASM sample 
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Figure 8. Frontier versus average technology for metal-forming machine tools, 
census sample 
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Frontier versus average technology for metal-forming machine tools, 
ASM sample 
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In both industries, the ASM data set exhibits greater differences between the 

average and frontier technologies. For example, for metal cutting tools, the census 

average and frontier technologies have very similar slope coefficients, and differ 

primarily by their intercept coefficients. For the ASM sample, however, the output 

elasticities of materials and capital are higher for the frontier technology, and the 

difference between the technologies, as shown in Figure 7, is more pronounced. This 

reflects the artificial homogeneity imposed by the imputation procedures of the 

census samples. 

For metal forming tools, the ASM sample again displays a greater divergence 

between the frontier and average technologies. In both samples, the frontier 

technology is more labor intensive, but the difference is not great. There is no 

consistent pattern between samples regarding the intensity capital or materials. 

Parameter Stability 

The initial test results imply that technical efficiency varies over time in all 

samples. However, recall from Chapter 3 that capital-labor ratios, investment, 

output-labor ratios, and total factor productivity changed considerably across years 

within a sample. The implicit assumption of the models in Tables 16 and 17 is that 

the frontier technology is constant over time. Over a sixteen year period, it is likely 

that best practice technology has changed; evidence from Chapter 3 supports this 

position as well. It may be more appropriate to measure technical efficiency against 

a different production function in each period. 
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In order to investigate the significance of changes in the parameters of the 

best-practice production function over time, analysis of variance tests (Chow tests) for 

stability of the parameters of the production function were performed for Model 5, 

the model with no plant effects. Table 20 contains the results of three tests for each 

data set. The null hypothesis in each case was that the vector of parameters for the 

unrestricted model for period 1 data was equal to the vector of parameters for the 

unrestricted model for period 2 data. 

For both census samples, parameter stability was tested between the 

subsample consisting of 1972-1977 data and that consisting of 1982-1987 data. If the 

null hypothesis was rejected, each of the two subsamples was tested further for 

stability between each census year. 

The data span four ASM panels. Evidence from Tables 3 and 4 indicates that 

the makeup of the ASM panel changed substantially between these periods. The 

ASM data were therefore partitioned such that the ASM panel years were kept 

together. The first Chow test used the entire data period, 1972-1987, for the 

restricted model, and the unrestricted model used 1972-1978 and 1979-1987. If the 

hypothesis of stability of the parameter estimates between these two subsamples was 

rejected, the data sets were further partitioned into the four panel periods, and tests 

were performed for stability between each panel period. 

For metal cutting tools, the results of the tests on the census data indicated! 

that 1972 and 1977 should be pooled, but 1982 and 1987 should be modeled 

separately. Similarly, the ASM data should be pooled for 1972 through 1978, but the 
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Table 20. Chow tests for stability of parameter estimates over time 

Time Periods Tested Sum of Squares 

Sample Restricted 
Unrestricted Unrestricted 

Period 1 Period 2 Restricted 
Unrestricted Unrestricted 

Period 1 Period 2 F Statistic Result 

3541 
Census 1972-1987 1972-1977 1982-1987 116.442 52.561 45.130 54.706 Reject 

1972-1977 1972 1977 52.561 28.223 23.660 1.945 Fail to 
Reject 

1982-1987 1982 1987 45.130 25.260 17.418 7.701 Reject 

ASM 1972-1987 1972-1978 1979-1987 214.884 90.786 106.782 44.391 Reject 

1972-1978 1972-1973 1974-1978 90.786 28.364 61.937 1.3409 Fail to 
Reject 

1979-1987 1979-1983 1984-1987 106.782 58.364 46.661 4.266 Reject 

3542 
Census 1972-1987 1972-1977 1982-1987 80.146 33.688 34.930 26.630 Reject 

1972-1977 1972 1977 33.688 19.839 9.635 11.760 Reject 

1982-1987 1982 1987 34.930 16.826 16.801 2.877 Reject 

ASM 1972-1987 1972-1978 1979-1987 131.654 55.999 58.847 49.723 Reject 

1972-1978 1972-1973 1974-1978 55.999 21.161 33.650 3.750 Reject 

1979-1987 1979-1983 1984-1987 58.847 40.641 16.559 4.744 Reject 

Note: The F statistic is compared to the value of F^ ^ = 2.37 
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samples for 1979-1983 and 1984-1987 should be modeled separately. In metal 

forming tools, all Chow tests resulted in a decision to reject the null hypothesis; 

hence production functions are estimated separately for each census year and for 

each set of years that compose an ASM panel period. 

Model Results-Separated Data 

Each of the models in Tables 16 and 17 was estimated with the partitioned 

data sets defined as a result of the Chow tests. The parameter estimates are shown 

in Tables 21 through 24, and the likelihood ratio tests dictating model choice are 

shown in Tables 25 and 26. Note that when only one year of data is used, the 

parameter r} is irrelevant, and only Models 3, 4, and 5 are estimated. 

Metal Cutting Tools 

Estimates for metal-cutting tools from the census data provide no evidence of 

technical efficiency for years 1982 and 1987. The hypothesis that y = 0 could not be 

rejected, indicating that variations from the estimated frontier were randomly 

distributed. For 1972 and 1977, evidence of technical efficiency was found, but the 

technical efficiency scores did not change from year to year. The hypothesis that the 

firm effects were insignificant was rejected, but the hypothesis that they are time-

invariant cannot be rejected. 

Estimates from the ASM data provide evidence of technical efficiency for each 

time period. The hypothesis that y = 0 is always rejected, indicating the significance 
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Table 21. Maximum likelihood estimates for parameters of stochastic frontier production functions in the machine 
tools industry, metal cutting type, census sample 

1972-1977 1982 1987 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 3 Model 4 Model 5 Model 3 Model 4 Model 5 

fio 1.414 
(0.074) 

1.415 
(0.088) 

1.420 
(0.076) 

1.416 
(0.080) 

1.226 
(0.068) 

1.223 
(0.088) 

1.217 
(0.211) 

1.105 
(0.087) 

0.901 
(0.996) 

0.918 
(0.129) 

0.892 
(0.100) 

Pl 0.307 
(0.028) 

0.290 
(0.029) 

0.321 
(0.026) 

0.290 
(0.028) 

0.279 
(0.028) 

0.225 
(0.037) 

0.231 
(0.038) 

0.232 
(0.038) 

0.246 
(0.897) 

0.246 
(0.039) 

0.246 
(0.038) 

)9M 0.377 
(0.025) 

0.382 
(0.019) 

0.376 
(0.018) 

0.382 
(0.018) 

0.395 
(0.018) 

0.473 
(0.024) 

0.471 
(0.027) 

0.470 
(0.027) 

0.583 
(0.812) 

0.583 
(0.026) 

0.583 
(0.026) 

PK 0.307 
(0.025) 

0.317 
(0.026) 

0.296 
(0.026) 

0.317 
(0.026) 

0.315 
(0.026) 

0.275 
(0.028) 

0.276 
(0.032) 

0.272 
(0.032) 

0.178 
(0.741) 

0.178 
(0.029) 

0.178 
(0.028) 

0.508 
(0.033) 

0.119 
(0.014) 

0.658 
(0.173) 

0.120 
(0.014) 

0.088 0.636 
(0.495) 

0.097 
(0.045) 

0.086 0.075 
(0.997) 

0.072 
(0.008) 

0.072 

7 0.878 
(0.009) 

0.415 
(0.131) 

0.899 
(0.042) 

0.420 
(0.096) 

0.000 0.892 
(0.099) 

0.207 
(0.625) 

0.000 0.050 
(1.000) 

0.010 
(0.091) 

0.000 

-2.715 
(0.240) 

0.000 -3.875 
(1.241) 

0.000 0.000 -4.240 
(4.007) 

0.000 0.000 -0373 
(1.000) 

0.000 0.000 

n 0.008 
(0.030) 

0.001 
(0.003) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ln(L) -111.008 -115.782 -110.110 -115.779 -119.678 -54.057 -54.809 -54.814 -23.778 -23.781 -23.777 
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Table 22. Maximum likelihood estimates for parameters of stochastic frontier 
production functions in the machine tools industry, metal cutting type, 
ASM sample 

Parameter 

1972-1978 1979-1983 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 

Po 2.592 2.325 2.916 2.326 1.654 1.595 1.539 
(0.222) (0.084) (14.44) (0.090) (0.057) (0.073) (0.092) 

PL 0.387 0.336 0.387 0.338 0.351 0.351 0.372 PL 
(0.026) (0.026) (0.025) (0.026) (0.023) (0.061) (0.031) 

0.480 0.482 0.476 0.482 0.522 0.559 0.572 
(0.017) (0.015) (0.016) (0.014) (0.014) (0.018) (0.017) 

0.113 0.109 0.114 0.107 0.103 0.098 0.072 
(0.021) (0.021) (0.019) (0.021) (0.017) (0.050) (0.026) 

0.103 0.285 0.097 0.240 0.090 0.146 0.307 
(0.009) (0.028) (0.064) (0.026) (0.071) (0.027) 

Y 0.597 0.840 0.572 • 0.814 0 0.644 0.832 
(0.025) (0.019) (0.031) (0.024) (0.189) (0.018) 

M 0.968 0 1.231 0 0 0.427 0 
(0.199) (14.44) (0.098) 

n -0.009 -0.026 0 0 0 -0.175 0.143 
(0.007) (0.013) (0.155) (0.029) 

Ln(L) -39.452 -69.629 -42.087 -72.894 . -216.148 - 63.214 -69.332 
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Table 22 (continued) 
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1979-1983 1984-1987 

Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

1.705 1.618 1.320 1.478 1.554 1.455 1.554 1.342 
(0.014) (0.101) (0.077) (0.135) (0.142) (0.132) (0.142) (0.127) 

0.423 0.417 0.416 0.283 0.297 0.290 0.303 0.340 
(0.028) (0.028) (0.026) (0.039) (0.042) (0.040) (0.042) (0.042) 

0.581 0.577 0.556 0.617 0.611 0.614 0.608 0.608 
(0.020) (0.019) (0.017) (0.027) (0.029) (0.025) (0.027) (0.026) 

0.024 0.024 0.049 0.085 0.079 0.085 0.077 0.044 
(0.021) (0.021) (0.019) (0.032) (0.032) (0.031) (0.032) (0.032) 

0.096 0.160 0.090 2.085 0.239 1.544 0.211 0.126 
(0.011) (0.018) (1.068) (0.022) (0.888) (0.027) 

0.419 0.640 0 0.963 0.677 0.949 0.637 0 
(0.066) (0.048) (0.021) (0.040) (0.033) (0.057) 

0.394 0 0 -7.170 0 -6.186 0 
(0.138) (4.225) (4.020) 

0 0 0 -0.081 -0.044 0 0 0 
(0.035) (0.043) 

-86.723 -90.163 • •137.482 -113.296 • •115.822 • •114.480 • •116.912 • •141.593 
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Table 23. Maximum likelihood estimates for parameters of stochastic frontier 
production functions in the machine tools industry, metal-forming type, 
census sample 

Parameter 

1972 1977 

Parameter Model 3 Model 4 Model 5 Model 3 Model 4 Model 5 

1.913 2.185 1.889 1.309 1.330 1.026 
(0.105) (0.168) (0.149) (0.109) (0.135) (0.120) 

0.460 0.461 0.460 0.318 0.279 0.228 
(0.033) (0.056) (0.060) (0.041) (0.045) (0.041) 

0.370 0.365 0.370 0.512 0.533 0.569 
(0.024) (0.038) (0.040) (0.033) (0.036) (0.037) 

0.126 0.124 0.126 0.179 0.192 0.207 
(0.029) (0.038) (0.041) (0.033) (0.035) (0.037) 

a' 0.120 0.176 0.116 0.982 0.107 0.061 
(0.004) (0.035) (0.396) (0.020) 

Y 0.049 0.567 0.970 0.712 0.000 
(0.002) (0.156) (0.016) (0.111) 

At -0.608 0 -5.644 0 0.000 
(0.030) (2.516) 

n 0 0 0.000 

Ln(L) -27.507 -56.440 -57.815 6.990 2.088 -1.268 
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Table 23 (continued). 
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1982 1987 

Model 3 Model 4 Model 5 Model 3 Model 4 Model 5 

1.213 1.218 1.088 1.271 1.252 0.886 
(0.127) (0.180) (0.131) (0.194) (0.208) (0.196) 

0.413 0.413 0.412 0.449 0.423 0.381 
(0.054) (0.056) (0.057) (0.065) (0.074) (0.076) 

0.444 0.445 0.447 0.472 0.488 0.516 
(0.039) (0.040) (0.041) (0.049) (0.051) (0.053) 

0.152 0.150 0.149 0.126 0.139 0.153 
(0.036) (0.037) (0.038) (0.047) (0.052) (0.054) 

0.704 0.115 0.100 2.100 0.207 0.130 
(0.261) (0.037) (0.839) (0.042) 

0.889 0.237 0 0.970 0.628 0 
(0.044) (0.397) (0.013) (0.134) 

-4.428 0 0 -8.289 0 0 
(1.979) (3.635) 

0 0 0 0 

-42.543 -44.106 -44.146 -45.962 -49.483 -51.135 
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Table 24. Maximum likelihood estimates for parameters of stochastic frontier production functions in the machine 
tools industry, metal-forming type, ASM sample 

1972-1973 1974-1978 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

2.545 2.377 2.548 2.517 1.879 2.082 1.966 1.968 1.960 1.692 
(0.146) (0.651) (0.176) (0.178) (0.149) (0.037) (0.102) (0.108) (0.107) (0.079) 

0.434 0.446 0.488 0.485 0.452 0.461 0.459 0.460 0.457 0.493 
(0.044) (0.082) (0.052) (0.053) (0.054) (.020) (0.029) (0.032) (0.314) (0.028) 

0.389 0.406 0.398 0.405 0.430 0.432 0.429 0.433 0.431 0.446 
(0.021) (0.068) (0.029) (0.029) (0.033) (0.042) (0.018) (0.191) (0.019) (0.018) 

P k  0.085 0.097 0.038 0.057 0.086 0.092 0.084 0.084 0.085 0.056 P k  
(0.041) (0.129) (0.046) (0.046) (0.042) (0.025) (0.025) (0.261) (0.026) (0.022) 

1.239 0.177 0.860 0.200 0.102 0.077 0.152 0.890 0.113 0.069 
(1.745) (0.311) (2.031) (0.032) (0.056) (0.013) (0.029) (0.015) 

Y 0.973 0.810 0.949 0.786 0 0.412 0.692 0.461 0.572 0 
(0.384) (0.356) (0.119) (0.048) (0.511) (0.034) (0.178) (0.065) 

M -5.225 0 -2.618 0 0 0.474 0 0.154 0 0 
(8.531) (8.029) (1.633) (.198) 

n 0.435 0.152 0 0 0 -0.083 -0.103 0 0 0 
(0.089) (0.128) (0.075) (0.055) 

Ln() -18.254 -27.161 -32.916 -33.849 -56.778 -4.071 -6.569 -14.199 -14.363 -39.494 
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Table 24 (continued) 

1979-1983 1984-1987 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

Po 1.642 1.497 2.451 1.524 1.158 1.680 1.822 1.712 1.813 1.439 
(0.118) (0.087) (10.290) (0.098) (0.071) (0.219) (0.293) (0.023) (0.252) (0.196) 

0.355 0.369 0.402 0.395 0.433 0.486 0.500 0.487 0.498 0.455 
(0.038) (0.036) (0.034) (0.035) (0.030) (0.057) (0.061) (0.056) (0.060) (0.056) 

0.554 0.557 0.590 0.576 0.570 0.434 0.419 0.435 0.424 0.477 
(0.024) (0.025) (0.025) (0.024) (0.023) (0.039) (0.042) (0.038) (0.040) (0.037) 

0.093 0.073 0.031 0.036 0.030 0.088 0.084 0.083 0.083 0.074 
(0.022) (0.024) (0.022) (0.021) (0.020) (0.042) (0.045) (0.042) (0.043) (0.039) 

a2 0.113 0.248 0.089 0.159 0.083 1.373 0.161 1.540 0.191 0.096 
(0.015) (0.031) (0.008) (0.021) (1.571) (0.039) (1.395) (0.038) 

Y 0.593 0.798 0.494 0.693 0 0.964 0.718 0.968 0.752 0 
(0.039) (0.146) (0.051) (0.485) (0.043) (0.082) (0.034) (0.065) 

M 0.578 0 1.276 0 0 -5.778 0 -6.059 0 0 
(0.107) (10.299) (7.254) (6.295) 

V -0.105 -0.120 0 0 0.0 0.034 0.042 0 0 0 
(0.045) (0.030) (0.021) (0.042) 

Ln(L) -20.633 -25.553 -31.995 -36.880 -.84.996 -23.261 -24.344 -23.755 -24.797 -41.738 
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Table 25. Tests of hypothesis for parameters of the distribution of plant effects, 
Uj,, in the machine tool industry, metal-cutting type 

Sample/Year Assumption Null Hypothesis Z^O.95 Stat. Decision 

Census 72-77 Model 1 Y = /i = f7 = 0 7.81 17.340 Reject 

Model 1 (i = n = 0 5.99 9.542 Reject 

Model 1 = 0 3.84 9.548 Reject 

Model 1 r] = 0 3.84 1.796 Fail to Reject 

Model 3 M = 0 3.84 11.338 Reject 

Census 1982 Model 3 y = li = 0 5.99 1.514 Fail to Reject 

Census 1987 Model 3 y = [i = 0 5.99 -0.002* Fail to Reject 

ASM 1972 - 1978 Model 1 y = fji = r] = 0 7.81 353.392 Reject 

Model 1 M = f? = 0 5.99 66.884 Reject 

Model 1 /i = 0 3.84 60.354 Reject 

Model 1 rj = 0 3.84 5.270 Reject 

ASM 1979 - 1983 Model 1 y = fj. = T] = 0 7.81 148.536 Reject 

Model 1 At = f? = 0 5.99 53.898 Reject 

Model 1 M = 0 3.84 12.236 Reject 

Model 1 rj = 0 3.84 47.018 Reject 

ASM 1984 - 1987 Model 1 y = H = r) = 0 7.81 56.594 Reject 

Model 1 /i = n = 0 5.99 7.232 Reject 

Model 1 M = 0 3.84 5.052 Reject 

Model 1 fj = 0 3.84 2.368 Fail to Reject 

Model 3 /i = y= 0 5.99 54.226 Reject 

Model 3 jLt = 0 3.84 4.864 Reject 

Note: Theoretically, it is impossible for this number to be negative, since the 
log of the likelihood function for the restricted model is always lower 
than that of the unrestricted model. However, after tiying several 
different starting values and step sizes, it was determined that the 
iterative minimization process was functioning properly and 
approaching a saddle point. A feasible explanation for the negative 
statistic, given its size, is rounding error. 
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Table 26, Tests of hypothesis for parameters of the distribution of plant effects, 
Uj,, in the machine tool industry, metal-forming type 

Sample/Year Assumption Null Hypothesis %^0.95 Stat. Decision 

Census 1972 Model 3 Y II II o
 

5.99 60.616 Reject 

Model 3 II o
 

3.84 57.866 Reject 

Census 1977 Model 3 Y II II o
 

5.99 16.516 Reject 

Model 3 II o
 

3.84 9.804 Reject 

Census 1982 Model 3 Y II t
 II o
 

5.99 3.206 Fail to Reject 

Census 1987 Model 3 Y = fi = Q 5.99 10.346 Reject 

Model 3 X:
 II O
 

3.84 7.042 Reject 

ASM 1972-1973 Model 1 Y = M 
o
 

II c-II 7.81 77.048 Reject 

Model 1 M 

o
 II c
 

II 5.99 31.190 Reject 

Model 1 II o
 

3.84 17.814 Reject 

Model 1 

o
 

II c- 3.84 29.324 Reject 

ASM 1974-1978 Model 1 Y = M = T) = 0 7.81 70.848 Reject 

Model 1 M II II o
 

5.99 20.584 Reject 

Model 1 •f
t II o
 

3.84 4.996 Reject 

Model 1 rj = 0 3.84 20.256 Reject 

ASM 1979-1983 Model 1 Y = M 

o
 

II c
 

II 7.81 128.726 Reject 

Model 1 M II II o
 

5.99 32.494 Reject 

Model 1 

o
 

II a. 3.84 9.840 Reject 

Model 1 

o
 

II c
 3.84 22.724 Reject 

ASM 1984-1987 Model 1 Y = M II -3
 

II O
 

7.81 36.954 Reject 

Model 1 M II es
 

II o
 

5.99 3.072 Fail to Reject 

Model 3 •f
t II o
 

3.84 2.084 Fail to Reject 

Model 2 f? = 0 3.84 0.906 Fail to Reject 

Model 3 II o
 

3.84 33.882 Reject 
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of the variance of the one sided component of the error as a share of the variance of 

the total error. The full model is chosen as the appropriate model in all cases, except 

for 1984-1987. Technical efficiency does not vary over years for this period. The 

hypothesis that rj = 0 cannot be rejected, indicating that Model 3 is appropriate. 

Metal Forming Tools 

For metal-forming machine tools, technical efficiency is indicated by the 

hypothesis tests on the census data in 1972, 1977, and 1987. For 1982, there is not 

sufficient evidence to reject the hypothesis that deviations from the frontier are due 

only to random variation. Model 3 is chosen for 1972, 1977 and 1987, but Model 5 is 

the appropriate model for 1982. 

The model tests from the ASM sample lead to the choice of the full model for 

each time period, except for 1984-1987, in which the time invariant half normal 

model (Model 4) was chosen. This result parallels the results for metal-cutting 

machine tools. In both cases, technical efficiency is significant and changes over time, 

except for the 1984-1987 period. 

Census/ASM Comparison 

For both metal-cutting and metal-forming machine tools, the model choices 

dictated by the hypothesis tests are strongly influenced by which sample is used. The 

census data indicate no evidence of technical inefficiency in three out of seven 

models selected. This contrasts with the models chosen for the ASM data, which 
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always include the parameters specifying the distribution of the one sided component 

of the error term. There are reasons to suspect that the inconsistent results are a 

function of the imputation procedures used by the Census Bureau. As explained in 

Chapter 3, census data are subject to a great deal more imputation, especially for 

capital stock data. Furthermore, the imputation procedure used for census data 

forces plants toward the industry averages. For this reason, it is believed that the 

homogeneity of the plant level data from the census is artificial. 

While 1987 census data will be used for analysis in later chapters involving 

technology usage, the remainder of the analysis in this chapter and in Chapter 6 will 

focus on the ASM data. 

Frontier versus Average Efficiency 

Table 27 and Figures 10, 11, and 12 highlight the differences between the 

frontier and average production functions for metal cutting tools. The most 

interesting feature of these functions is the change in the divergence between the 

average and best practice frontiers over the years. From the first to the second time 

period, both the average and frontier technologies regressed, but the frontier 

technology regressed further; this is consistent with a higher average level of 

efficiency for the second time period. From the second to the third production 

function, the frontier regressed while average technology crept forward slightly. This 

would be consistent with higher efficiency scores as well, caused partially by 

movement of some plants to the southwest, and partially by a shift in the frontier. 
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Table 27. Comparison of frontier technology to average technologies for 
metal-cutting machine tools. 

1972-1978 1979-1983 1984-1987 

Model 1 Model 5 Model 1 Model 5 Model 3 Model 5 

k .98 .976 1.008 1.021 .989 .992 

6l .387 .351 .351 .416 .290 .340 

6m .48 .522 .559 .556 .614 .608 

6k .113 .103 .098 .049 .085 .044 

«l .395 .360 .348 .407 .293 .343 

6m .490 .535 .555 .545 .621 .613 

Sk .115 .106 .097 .048 .086 .044 

.291 .294 .279 .118 .294 .128 

Sl/^m .806 .673 .627 .747 .472 .560 

Material* <Thou«and«) 
10 

200 280 300 350 400 450 600 SBO 600 650 

Labor Hours 

Figure 10. 
frontisr avsrafl* 

Frontier and average production functions for metal-cutting 
tools, 1972-1978 

machine 
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Figure 11. Frontier and average production functions for metal-cutting machine 
tools, 1979-1983 
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Figure 12. Frontier and average production functions for metal-cutting machine 
tools, 1984-1987 
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Over time, the frontier technology changed from being more to less labor 

intensive than the average technology. At the same time, materials began to 

command a larger cost share in the frontier technology. The frontier technology is 

consistently more capital intensive than the average. 

Table 28 and Figures 13 through 16 highlight the differences between the 

frontier and average technologies for metal-forming tools. The frontier and average 

technologies are closer together at the beginning of the data period than they were 

for metal cutting tools. The gap widened in the second period, and it appears that 

this is partially due to movement of plants away from the frontier, as well as the shift 

of the frontier. By the final period, the gap between the average and frontier 

technologies had narrowed again, and average technology, overall, had regressed from 

its 1972-1973 placement. 

The frontier technology is consistently less labor intensive than the average 

technology, except in the final period. Output elasticity for capital drops sharply for 

the average technology in the middle two periods. 

Summary of Preliminary Estimation Results 

A single stochastic frontier production function was estimated for each 

industry for the entire 16 year period. Chow tests of parameter stability suggested 

that these estimates were not stable over time, and subsets of the data appropriate 

for estimation of separate frontiers were identified. Parameter estimates of the 

stochastic frontiers for each subset of the data suggested the existence of technical 
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Table 28. Comparison of frontier technology to average technology for metal forming machine tools 

1972-1973 1974-1978 1979-1983 1984-1987 

Model 1 Model 5 Model 1 Model 5 Model 1 Model 5 Model 4 Model 5 

.908 .968 .985 .995 1.002 1.033 1.005 1.006 

g .434 .452 .461 .493 .355 .433 .498 .455 

& .389 .430 .432 .446 .554 ,570 .424 All 

.085 .086 .092 .056 .093 .030 .083 .074 

SL .478 .467 .468 .495 .354 .419 .496 .452 

SM .428 .444 .439 .448 .553 .552 .422 474 

SK .094 .089 .093 .056 .093 .029 .083 .074 

.197 .191 .199 .113 .263 .069 .167 .164 

SL/Sm 1.117 1.052 1.066 1.105 0.640 0.759 1.175 0.954 
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Figure 13. Frontier and average production functions for metal-forming machine 
tools, 1972-1973 
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Figure 14. Frontier and average production functions for metal-forming machine 
tools, 1974-1978 
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Figure 15. Frontier and average production functions for metal-forming machine 
tools, 1979-1983 
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Figure 16. Frontier and average production functions for metal-forming machine 
tools, 1984-1987 
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efficiency in all but three subsets of the data, all of which taken from the census. 

Investigation into the effect of census imputation procedures on the heterogeneity of 

the sample led to a decision to accept the ASM efficiency estimates as more reliable. 

The remainder of the discussion in this chapter will refer only to the ASM data. 

The Extent of Technical Efticiency 

The predictor for technical efficiency, derived by Battese and Coelli (1991) is 

E[exp(-a^|gJ = 
1 -

1 -

J , 1 2 

M'i -

Oi = 

2 / 2 

2 / 2 

2 / 2 

(5.10) 

where represents the vector of Cj, associated with the time periods observed for 

plant i and ejt = Vj, + Uj,. Technical efficiency averages for each industry and year 

are plotted in Figure 17. Note that the groups of observations estimated with the 

same production function all lie together, with discrete jumps at years in which a new 

production function is estimated. In 1984-1987, technical efficiency by plant does not 

vary, since the hypothesis that r/ = 0 could not be rejected. Differences in the 

averages for these years represent changes in the composition of the panel; i.e., plants 

exiting and entering the industry. 
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Figure 17. Average technical efficiency by year, metal-cutting and metal-forming 
machine tools 

Examples of the relationship between the parameter estimates and the 

efficiency scores are shown in Figures 18 through 23. Each pair of figures refers to a 

separate industry/time period. The top plot in each figure is the normal distribution, 

drawn according to the parameter estimates of ju, and Two scales are given below 

the plot; the top scale is for the U; and the bottom is the corresponding efficiency 

score (exp(-uj)). A vertical line is shown at uj = 0, indicating the truncation point; 

the plant effects are drawn from the area to the right of this point. The tic marks 

that correspond to each reference point on the normal probability plot are included 

for reference to the histogram of the calculated efficiency scores that appears below 

the normal plot. Each bar in a histogram represents one half of a standard deviation, 

except in Figure 23, where each represents one quarter of a standard deviation. 
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Figure 18. Theoretical distribution of plant effects for metal-cutting machine tools, 
1978 
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Figure 19. Histrogram of technical efficiency scores for metal-cutting machine 
tools, 1978 
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Figure 20. Theoretical distribution of plant effects for metal-cutting machine tools, 
1983 
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Figure 21. Histrogram of technical efficiency scores for metal-cutting machine 
tools, 1983 
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Figure 22. Theoretical distribution of plant effects for metal-forming tools, 1973 
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Figure 23. Histrogram of techical efficiency for metal-forming machine tools, 1973 
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Figure 24. Theoretical distribution of plant effects for metal-forming machine tools 
1987 
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Figure 25. Distribution of technical efficiency for metal-forming machine tools, 1987 
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Metal-Cutting Tools 

The model for years 1972-1978, as illustrated in Figure 18, has a mean of .968 

and standard deviation of .321. The truncation point is 3.02 standard deviations to 

the left of the mean, and the plant effects for 1978 are drawn from a nearly normal 

distribution. The majority of the efficiency scores should lie between .524 and .275; 

the shape of the histogram in figure 19 approaches the expected distribution as 

defined by the model parameters. Since rj = -.009, the Uj are smaller for earlier years 

of the sample (see the derivation in Equation 1), and technical efficiency falls over 

time. The histogram of efficiency scores for 1972-1977, if it was plotted, would be 

skewed farther to the left than the 1978 histogram. 

Figure 20 shows the distribution of the plant effects for 1983 in metal cutting 

tools. It is similar to Figure 18 but, since the mean is smaller and the standard 

deviation larger, the truncation point is only 1.121 standard deviations to the left of 

the mean. Hence, the plant effects should be more skewed to the left, with the 

majority of the technical efficiency scores falling between 1 and .445. The histogram 

in Figure 20 shows that the average, maximum, and minimum efficiency scores all are 

higher for 1983 than for 1978. The value of r? indicates that the histogram of 

efficiency scores for 1979-1982 would be skewed farther to the left. 

The 1987 plant effects are not shown, but they are taken from the far right 

hand tail of the normal distribution. With a mean of -6.187 and standard deviation of 

1.243, the truncation point occurs almost five standard deviations to the right of the 

mean. The distribution is similar to that of the 1973 distribution for metal-forming 
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tools. Note that since r? = 0 in this model, the efficiency scores for 1984 and 1985 

are the same as the 1987 scores. 

Metal-Forming Tools 

The distribution of the firm effects for 1973 is shown in Figure 22. Like the 

1987 distribution for metal-cutting tools, the firm effects are drawn from the extreme 

right hand tail of the normal distribution. The distribution from which the scores are 

taken hold most of its mass just after the truncation point. The truncation point lies 

4.69 standard deviations to the right of the mean, and one standard deviation to the 

right of the truncation point represents an efficiency score of only .328. The 

histogram in Figure 23 shows that the actual distribution of the plant effects is fairly 

skewed to the left, with most of the observations lying between 1 and .6. The 

estimate of rj is positive, so the scores are higher for 1973 than for 1972. 

For 1978, the truncation point is 1.704 deviations to the left of the mean of 

.474. Theoretically, the efficiency scores should approach a nearly normal 

distribution, with the majority of the scores lying between .822 and .471. The 

estimate of rj is negative; therefore, the distribution of efficiency scores decline over 

the period. For 1983, the picture is very similar. The truncation is 1.723 standard 

deviations to the left of the mean, which is .578. The negative value of rj indicates 

that the scores decline over time. 

For 1987, Model 4 was chosen as the appropriate model; the mean of the 

distribution is zero, as shown in Figure 23. The histogram of the efficiency scores in 
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Figure 24 resembles the half normal distribution. 

Summaiy 

Maximizing the likelihood function in Equation 5.7 produces estimates for the 

kernel production function, the mean and variance of the distribution of the two 

components of the error term, and the time variation parameter r). The expectation 

of the plant effects is calculated from these estimates (Equation 6), and technical 

efficiency scores are a simple transformation of the plant effects (TE;, = expC-Uj^)). 

Technical efficiency for metal cutting tools declines over time within the time 

periods for which single frontiers are estimated. However, with each shift in the 

frontier production function, average efficiency improves compared to the efficiency 

scores for the previous period. This is probably due in part to regression of the 

frontier technology, and in part to improvements in efficiency. 

For metal forming tools, efficiency grew from 1972 to 1973. For the following 

period, however, efficiency declines within the production function periods. 

Efficiency rises significantly for the period 1984-1987, approaching its 1973 level. 

Visual inspection of the changes if the frontiers, given fixed output and capital 

reveals that some frontiers appear to shift backwards. Hence it is not always clear 

how much efficiency improvement is attributable to a plant moving toward the 

frontier and how much is due to the shift in the frontier. This issue will be examined 

in Chapter 7, in which Malmquist indexes of productivity change are decomposed into 

changes in efficiency and technical change. 
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CHAPTER 6. EMPIRICAL RESULTS II 

Frontier technologies have been determined for metal-cutting machine tools 

and metal-forming machine tools for 1972 through 1987. Estimates of plant technical 

efficiency relative to the appropriate frontier exhibit variation across plants and years. 

In this chapter, the relationship between plant characteristics and efficiency is 

investigated. In the first section, the relationship between technical efficiency and 

plant size, plant age, average wages, ownership, location, and access to manufacturing 

extension is examined. In the second section, the determinants of plant survival are 

explored, and technical efficiency is evaluated as a predictor of the probability of 

survival. In the final section, the relationship between efficiency and growth is 

investigated. 

Technical Efficiency and Plant Characteristics 

Several plant and location specific variables were investigated for their 

association with technical efficiency. For the plant characteristics represented by 

continuous variables (size, average production worker wage, and investment), Pearson 

correlations were estimated between each variable and the plant's efficiency score as 

well as its rank (the plants are ranked separately for each year, in ascending order). 

The rank correlation is a better indicator of the association between the continuous 

variable and a plant's efficiency in a given year relative to other plants. That is, it 

controls for changes in the efficiency scores of all plants over time. For discreet 
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variables, averages of technical efficiency are estimated by group, and tests of 

equality of the means are performed. A regression equation was then estimated to 

determine if any of these variables, controlling for the effect of the others, had strong 

predictive value for a plant's technical efficiency score. 

Size 

Two measures of size were correlated with efficiency and efficiency rank: total 

employment and total value of shipments. The correlations are displayed in Table 

29. The total value of shipments is positively correlated with efficiency and efficiency 

rank in both industries. 

The positive correlation between shipments and efficiency might be explained 

by returns to scale. However, the parameter estimates of the production function did 

not consistently indicate increasing returns, for either the frontier or the average 

technology. Even when increasing returns were indicated, they were very weak. A 

more likely explanation is that a high level of output is also associated with other 

plant characteristics that contribute to efficiency, particularly in a given year. An 

attempt to assess the impact of scale on efficiency while controlling for confounding 

factors is explored below with regression analysis. 

The association between employment and efficiency is very weak. In metal-

cutting machine tools, plants with relatively high employment also have relatively high 

efficiency ranks, but not higher efficiency scores. This seems inconsistent, but it may 

be due to systematic patterns over time. That is, while no correlation between 
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Table 29. Pearson correlation coefficients between efficiency and plant 
characteristics: size, average production worker wage, and investment® 

3541 3542 

Efficiency Efficiency 
Characteristic Obs. Efficiency Rank Obs. Efficiency Rank 

Total Value of 2032 .1913 .0993 1367 .1050 .0933 
Shipments (.0001) (.0001) (.0001) (.0006) 

Total 2032 -.0024 .0500 1367 .0602 .0410 
Employment (.9142) (.0243) (.0260) (.1299) 

Average Prod. 2032 .6035 .0865 1367 .0661 -.0122 
Worker Wage (.0001) (.0001) (.0146) (.6523) 

New Investment 

Year t 2032 .1435 .0087 1367 .0432 .0469 
(.0001) (.6944) (.1106) (.0828) 

Year t-1 1486 .1756 -.0094 1030 -.0162 -.0192 
(.0001) (.7170) (.6044) (.5382) 

Year t-2 1228 .1801 .0178 844 -.0422 -.0170 
(.0001) (.5338) (.2205) (.6226) 

Year t-3 1024 .1810 .0073 679 -.0327 -.0609 
(.0001) (.8155) (.3948) (.1132) 

Year t-4 828 .2042 .0160 540 -.0116 -.1229 
(.0001) (.6453) (.7876) (.0042) 

Year t-5 671 .1877 .0076 422 -.0071 -.1664 
(.0001) (.8439) (.8847) (.0006) 

Year t-6 597 .1459 -.0033 366 -.0313 -.1701 
(.0003) (.9357) (.5502) (.0011) 

Year t-7 523 .0375 -.0311 309 -.0262 -.1664 
(.3928) (.4776) (.6460) (.0033) 

Year t-8 450 .0660 -.0245 259 -.1305 -.2115 , 
(.1623) (.6042) (.0349) (.0006) 

^Numbers in parentheses are probability that the value is observed under the 
null hypothesis that the correlation coefficient is equal to zero. 
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efficiency score and employment exists across years, within a year, plants with high 

employment also have relatively high scores. 

The association between size and efficiency is clearly confounded by other 

factors. The relationship will be clarified in the regression analysis performed below. 

Average Production Worker Wage 

Average production worker wage is correlated with efficiency in both 

industries. This result confirms the preliminary information from Table 10 that 

showed a relationship between traditional efficiency measures and average wage. 

Plants with higher average production worker wages probably are paying for workers 

with better skills, which results in greater efficiency. 

However, the correlation is weaker for metal-forming machine tools than for 

metal-cutting machine tools. This may be due simply to differences in the time trend 

of the two industries. Figure 17 showed that efficiency generally rose over time in 

metal-cutting machine tools, but fell slightly for metal-forming machine tools. The 

effects of time on the relationship between efficiency and wages can again be sorted 

out by the regression analysis below. 

Investment 

Correlation were calculated for efficiency and efficiency rank against 

investment in the concurrent year and in the fifteen previous years. Statistically 

significant correlations were found between efficiency score and lagged investment in 
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both industries. In metal-cutting machine tools, the correlation was .143 in the 

concurrent year, rose slightly for each year backward, peaked at year t-4, then 

declined, and no statistically significant correlation was found after year t-6. No 

statistically significant correlations were found between investment and efficiency 

rank in this industry, indicating that investment and efficiency vary unsystematically 

over time. 

In metal-forming machine tools, no statistically significant correlations were 

found between investment and efficiency score. Statistically significant correlations 

were found between lagged investment and efficiency rank; these correlations are 

negative and become significant at four year lag. This result seems counter-intuitive; 

plants making new investments should reap efficiency gains in the future. However, 

this negative association might reflect the capacity utilization problem. Plants that 

increased capacity during the boon of the early 70s might have suffered especially 

severe capacity utilization problems in later years. However, there is little reason to 

believe that this would be true for metal-forming tools, but not for metal-cutting 

tools. Perhaps it is not simply the level of investment that is important, but the type 

of investment. In Chapter 7, the relationship between efficiency and specific 

technologies will be investigated using plants responding to the 1988 Survey of 

Manufacturing Technology. 

Ownership 

A plant ovraed by a multi-unit firm is likely to have higher efficiency for two 
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reasons: first, because it is likely to benefit from the specialization of manufacturing 

functions, and second, because the administrative functions of the plant are likely to 

be provided by corporate headquarters. In metal-cutting machine tools, 56 percent of 

the 380 separate plants are owned by firms that also own other plants. This 56 

percent of the plants represents about 73 percent of the observations, because the 

plants owned by 

multi-unit firms tend to be present in the sample over a longer period of time. In 

metal-forming machine tools, 55 percent of the plants are owned by multi-unit firms, 

and these account for about 69 percent of the observations. 

Averages of technical efficiency by year and ownership class are shown in 

Table 30. Tests of significance of the difference of the means resulted in acceptance 

of the null hypothesis that the means were equal in all years, except for 1983 in 

metal-forming machine tools. There is no evidence from these tests to support the 

hypothesis that plants owned by multi-unit firms are more efficient than their single 

unit counterparts. 

Age 

Measurement of plant age with the LRD is limited by the truncation of the 

data. Longitudinal linkage of plants across census years is available as early as 1963; 

however, if a plant is operating in 1963, the first year of operation is unknown. 

About 54 percent of the plants in metal-cutting machine tools and 47.4 percent of the 

plants in metal-forming machine tools were operating in 1963. Furthermore, plants 
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Table 30. Average efficiency scores for plants owned by single and multi unit 
firms 

Year 

3541 3542 

Year Single-Unit Multi-Unit Single-Unit Multi-Unit 

1972 .409 .421 .747 .749 

1973 .411 .415 .811 .826 

1974 .405 .412 .711 .725 

1975 .400 .407 .689 .707 

1976 .387 .406 .671 .682 

1977 .401 .409 .638 .656 

1978 .394 .404 .671 .633 

1979 .797 .809 .659 .709 

1980 .761 .774 .659 .682 

1981 .723 .735 .631 .651 

1982 .695 .699 .594 .627 

1983 .652 .668 .545* .606* 

1984 .841 .810 .716 .768 

1985 .837 .806 .716 .771 

1987 .825 .828 .730 .773 

* Difference between means is significant at a = .05. 
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that began operating between 1964 and 1967 were first observed in 1967; plants 

beginning operations between 1968 and 1972 were first observed in 1972; and plants 

beginning operations between Census years sometimes are not added to the ASM 

sample until after the following Census. Therefore, it was decided to treat age as a 

discrete, rather than a continuous variable. The plants were partitioned into five 

groups according to the year in which they were first observed on the LRD. Age 

group 1 was first observed in 1963; age group 2 was first observed in 1967; age group 

3 was first observed in 1972; age group 4 was first observed in 1973 through 1977; 

age group 5 was first 

observed in 1978 through 1982; age group 6 was first observed from 1983 through 

1987. 

Average efficiency scores and the number of observations by year for each 

group are provided in Tables 31 and 32. Results of tests of significance of the 

differences between mean efficiencies of each group are in the final column. In 

metal-cutting machine tools, the youngest plants are often the least productive, and in 

years 1973-1976, 1979, and 1983, these differences are statistically significant. For 

years 1984-1987, the least productive plants are those in age group 2. The group with 

the highest average efficiency score was always neither the youngest nor the oldest, 

except in 1984. From 1983 to 1984, the plants in group 6 changed from being the 

least to the most productive as a group. It is interesting to note that between these 

two years, there was complete turnover in this group; i.e., none of the plants in 1983 

was also present in the sample in 1984. This is probably at least partially due to the 
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Table 31. Average efficiency scores and number of plants by year and age group, 
metal-cutting tools 

Year 
Group 1 

to 63 
Group 2 
64-67 

Group 3 
68 - 72 

Group 4 
73 - 77 

Group 5 
78-82 

Group 6 
83-87 

Signif. 
Diff. 

1972 .412 .444 .426 ..a 
— —— None 

124 15 25 

1973 .409 .452 .426 .329 —— —— 1,2,3 with 
129 16 22 3 4 

1974 .402 .459 .437 .344 —— —— 1,2,3 with 
101 12 20 4 4 

1975 .395 .457 .452 .362 —— —— 2 with 4 
101 11 16 8 

1976 .392 .448 .449 .352 -- — 2,3 with 4 
98 12 18 9 

1977 .401 .447 .434 .386 —— -- None 
85 12 16 14 

1978 .395 .417 .435 .379 (D)» —— None 
88 12 15' 18 

1979 .804 .837 .796 .826 .787 —— 2 with 5 
95 9 11 5 8 

1980 .771 .792 .761 .797 .734 —— None 
95 9 12 5 10 

1981 .734 .758 .724 .764 .697 —— None 
100 9 12 5 15 

1982 .701 .724 .691 .699 .663 —— None 
97 6 12 6 12 

1983 .670 .679 .651 .657 .649 .596 1,2 with 6 
82 7 11 5 11 5 

1984 .815 .763 .845 .833 .814 .880 1,2 with 6 
78 8 24 7 13 5 2 with 3 

1985 .812 .763 .843 .831 .810 .827 2 with 3 
77 8 23 6 12 7 

1987 .830 .757 .856 .789 .851 .811 2 with 3 
65 7 13 7 9 4 

= no observations for this cell. 
•"(D) = data are suppressed to prevent disclosure. 
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Table 32. Average efficiency scores by year and age group, metal-forining tools. 

Year 
Group 1 

to 63 
Group 2 

64 - 67 
Group 3 

68 - 72 
Group 4 
73-77 

Group 5 
78 - 82 

Group 6 
83 - 87 

Signif. 
Diff. 

1972 .762 .835 .598 __b 
- - - - 1 with 2,3 

72 16 16 2 with 3 
1973 .835 .883 .727 .773 — —— 1 with 2,3 

72 14 18 3 2 with 3,4 
1974 .718 .731 .713 .754 —- —— None 

61 21 17 5 

1975 .700 .714 .695 .698 —— —— None 
58 20 17 6 

1976 .682 .690 .678 .637 —— - - None 
57 23 16 10 

1977 .656 .663 .638 .636 — —— None 
52 15 9 12 

1978 .637 .636 .603 .615 (D)C —— None 
48 16 10 15 

1979 .707 .679 .700' .699 .736 None 
56 13 13 22 6 

1980 .675 .652 .678 .661 .712 —— None 
58 13 11 21 6 

1981 .650 .623 .647 .641 .630 —— None 
53 13 10 18 8 

1982 .625 .616 .610 .600 .587 —— None 
50 8 10 11 8 

1983 .591 .576 .579 .553 .551 .636 None 
46 7 11 11 5 3 

1984 .766 .830 .797 .746 .718 .706 1 with 2 
34 4 3 6 7 5 2,3 with 6 

1985 .761 .833 .822 .797 .718 .706 2,3 with 6 
36 3 4 5 7 5 

1987 .750 .785 .829 .764 .818 .752 None 
35 3 3 8 4 4 

= no observations for this cell, 
''(D) = data are suppressed to prevent disclosure. 
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changes in the ASM panels between years. Issues of survival are investigated further 

in the next section. 

In metal-forming machine tools, age appears far less important in determining 

efficiency. Sometimes the most productive plants are the oldest, sometimes the 

youngest. There are very few statistically significant differences between age groups. 

The association between age and efficiency may be weaker in this industry because of 

a slower pace technological change. That is, if new plants embody new production 

technology, and if the pace of technological change is slower in metal-forming 

machine tools, then new plants may not be technologically different from older 

plants. 

The pattern of correlation between age and efficiency in metal-cutting 

machine tools suggests a process of "learning by doing" (Arrow 1962). New plants 

amy be less productive because the workers and managers do not have much 

experience with the new plant and equipment. However, the oldest plants are not 

the most efficient, so the advantage of experience may wane as the vintage of the 

capital increases. 

Plant age does not necessarily reflect the vintage of the machinery, as old 

plants may be retooled. The capital vintage question was addressed indirectly by the 

correlations between investment and efficiency. However, in order to separate the 

effects of learning by doing and capital vintage, more precise data on the vintage of 

capital as well as the turnover of employees is required than are available for this 

study. 
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Location 

Theories of industrial location suggest that relative productivity might be 

affected by the physical location of the plant. Several factors typically are cited by 

managers as important to location choice: the condition of local infrastructure, such 

as access to adequate supplies of water, energy, and transportation services; 

environmental regulations, such as solid waste disposal regulations and water and air 

pollution regulations; and market criteria such as proximity to customers, suppliers, 

competitors, and other offices of the company (Anderson et al. 1990). It is 

reasonable to assume that these locations are preferred because they either lower 

costs or improve demand. 

Some of these conditions might be expected to vary between metropoUtan and 

nonmetropolitan areas. Rural areas sometimes are deficient in essential 

infrastructure, and may not be close enough to population centers to provide an 

adequate labor force. Rural areas might also lack essential business services, which 

may be especially important to plants that are to small to support in-house services. 

Plants located in rural areas might be too far from their competitors and customers 

to benefit from the agglomeration economies that might increase efficiency for plants 

in metropolitan areas. 

Other factors raise efficiency for a plant with a rural location: the availability 

and price of land, tax rates, and less congestion. One recent studies of productivity 

differences between rural and urban locations showed that the advantage of rural or 

urban location is likely to depend on the specific resource requirements of the 
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industry (Martin et al. 1992). 

Most machine tool manufacturers are located within Standard Metropolitan 

Statistical Areas. Only 12.6 percent of the plants in metal-cutting machine tools and 

16.3 percent of plants in metal-forming machine tools are located outside SMSAs. 

Table 33 shows average efficiency scores for plants located in metropolitan and 

nonmetropolitan locations. It appears that efficiency in the machine tool industry is 

not sensitive to metropolitan or nonmetropolitan location; no significant differences 

were found, except , for 1984 and 1985 in metal-forming machine tools. In this case, 

metropolitan plants, on the average, were about 10 percent more efficient than 

nonmetropolitan plants. 

The lack of metropolitan efficiency effects might reflect the failure of location 

to pro)^ for the supposed advantages or disadvantages it provides. In order to study 

more directly the possible impact of location and agglomeration, a measure of the 

siting of plants relative to their customers and suppliers should be constructed. This 

variable might more accurately reflect agglomeration, and the efficiency variations 

might be stronger. While construction of such a variable is possible with data from 

the LRD, this task is left to later work. 

Access to Manufacturing Extension 

In 1972, manufacturing extension programs were operating in five states 

(Georgia, Iowa, North Carolina, Pennsylvania, and Tennessee). These states contain 

few machine tool manufacturers, and only about 5 percent of the machine tool 
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Table 33. Average efficiency scores for plants in metropolitan and 
nonmetropolitan locations, by year. 

Year 

3541 3542 

Year Metropolitan Nonmetropolitan Metropolitan Nonmetropolitan 

1972 .420 .396 .753 .718 

1973 .417 .392 .824 .805 

1974 .412 .402 .717 .749 

1975 .407 .396 .699 .721 

1976 .403 .400 .679 .678 

1977 .406 .413 .653 .652 

1978 .401 .407 .628 .633 

1979 .804 .813 .709 .676 

1980 .767 .788 .679 .642 

1981 .728 .756 .653 .604 

1982 .691 .740 .621 .592 

1983 .660 .685 .584 .575 

1984 .819 .828 .773* .678* 

1985 .814 .828 .777* .678* 

1987 .827 .821 .770 .717 

"Difference between means is significant at «= .05 
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manufacturers in the U.S. had access to industrial extension services (the assumption 

that all manufacturing extension programs are accessible to all manufacturers is 

feasible; while there are a few instances in which only small plants are targeted, most 

programs service any manufacturing plant located in the state (Clarke and Dobson 

1991)). Not until the inception of the Ohio Technology Transfer Organization 

(OTTO) program in 1979 did a significant share of the machine tool industry have 

access to these services. With the addition of Ohio in 1979, machine tool 

manufacturers in states with operating programs represented about 20 percent of the 

entire machine tool industry. The inception of the Michigan Manufacturing Institute 

in 1981 brought that percentage to about 50 percent; by 1987, about 75 percent of the 

machine tool manufacturers in the sample had access to industrial extension services. 

Table 34 shows that access to manufacturing extension is not associated with 

higher relative extension offices. In metal-cutting machine tools, while plants with 

access to manufacturing extension services had a higher average efficiency than other 

plants in ten of the fifteen years, this difference was statistically significant only for 

years 1977 and 1982. In metal-forming machine tools, the extension plants were on 

the average more efficient in only six of the fifteen years; none of the differences was 

statistically significant. Access to services, of course, does not imply that direct 

assistance was provided. However, it does imply public efforts to improve the flow of 

information to manufacturing regarding new technologies and manufacturing 

management. Failure to find significant correlation might be due to confounding 

effects that are associated with low efficiency. In fact, it may be that the low 
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Table 34. Average efficiency scores for plants located in states with active 
manufacturing extension program, versus those not located in any of 
those states^ 

Average Efficiency 
Percent of 

States Plants 3541 3542 

Year 

Operating 
Programs 

3541 3542 
With 

Access 
Without 
Access 

With 
Access 

Without 
Access 

1972 5 3.66 10.58 .462 .416 .728 .751 

1973 5 4.71 10.28 .428 .413 .809 .823 

1974 5 6.57 7.69 .486 .405 .767 .718 

1975 5 5.15 8.91 .512 .399 .731 .699 

1976 5 5.84 10.38 .483 .397 .700 .676 

1977 5 7.87 9.09 .512* .399* .654 .652 

1978 5 7.46 8.89 - .472 .396 .631 .629 

1979 6 19.53 19.09 .785 .810 .675 .710 

1980 7 20.61 19.27 .750 .775 .647 .678 

1981 8 51.06 33.33 .744 .720 .636 .647 

1982 8 48.12 34.48 .721* .677* .614 .616 

1983 8 47.93 33.73 .681 .647 .598 .574 

1984 15 57.04 45.76 .809 .836 .739 .776 

1985 17 66.92 68.33 .806 .836 .758 .771 

1987 25 73.33 77.19 .820 .843 .758 .781 

^Source: Start years for industrial extension programs in most states are taken 
from Clarke and Dobson, 1991. Some start dates were obtained by the author by 
phoning the industrial extension services. 
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efficiency of manufacturing in a given state is a catalyst for the development of 

aprogram. The regression analysis performed below analyzes the effect of extension 

with other variables held constant. In Chapter 7, data on actual assistance provided 

to plants by manufacturing programs is merged with the LRD data to determine the 

impact of actual participation, rather than access, on efficiency. 

Summaiy: What Plant Characteristics Contribute to Efficiency? 

A significant and strong association with efficiency was found for size 

(measured in total Vcilue of shipments) and the average production worker wage. A 

somewhat weaker relationship with efficiency was found for investment and age; 

almost no relationship with efficiency was found for multiple versus single unit firm 

ownership, metropolitan versus nonmetropolitan location, and access to 

manufacturing extension. However, the correlations and hypothesis tests reported 

above did not control for the effects of other variables. In order to glean more 

information from the data about the relationship between plant specific variables and 

efficiency, a simple linear regression model explaining the log of the efficiency score 

was estimated for each industry. The results of the estimation are reported in table 

35, with standard errors in parentheses. Abbreviations for independent variables are 

listed in Table 36. 

The log of the total value of shipments could not be included in the regression 

because of the obvious problem with correlation between total value of shipments 

and efficiency, since efficiency is equal to output minus a function of the inputs. 
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Table 35. Results from estimation of a linear regression model of plant 
characteristics on technical efficiency 

Independent 
Variable 

Parameter Estimate / Standard Error Independent 
Variable 3541 3542 

Intercept -1.462* -0.919* 
(0.049) (0.048) 

t 0.041* -0.018* 
(0.002) (0.002) 

Multi -0.063* -0.009 
(0.013) (0.011) 

Metro -0.036 0.045* 
(0.015) (0.013) 

AGE2 0.077* 0.033* 
(0.021) (0.016) 

AGE3 0.061* 0.004 
. (0.017) (0.016) 

AGE4 -0.083* 0.027 
(0.025) (0.017) 

AGE5 0.098* 0.031 
(0.027) (0.026) 

AGE6 -0.015 0.105* 
(0.053) (0.044) 

Ext 0.048* 0.025* 
(0.014) (0.013) 

Invest® 7.40 E-6 -1.79 E-5* 
(4.02 E-6) (0.67 E-5) 

Log of Avg TVS 0.017* 0.048* 
(0.005) (0.006) 

logof AVGPW 0.214* 0.111* logof AVGPW 
(0.021) (0.019) 

Adj. R2 .599 .148 

^This variable could not be logged because of zeros in the data, 

"coefficient is statistically different from zero. 
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Table 36. Abbreviations for key variables 

Variable Name Description 

Q Real output 

M Real value of materials 

VQ Nominal output 

TVS Total value of shipments 

endFGI Finished goods inventory, end of year 

begFGI Finished goods inventory, beginning of year 

endWIPI Work-in-process inventory, end of year 

begWIPI Work-in-process inventory, beginning of year 

APWW Average production worker wage 

PWW Total production worker wages 

PWH Total production worker hours 

NPWW Total Non-production worker wages 

L Labor (production worker equivalent hours) 

K Capital stock (net, in constant doUars) 

GBV Gross book value of the capital stock 

NSTKCON Net industry capital stock (2 digit), constant dollars 

GSTKHIS Gross industry capital stock (2 digit), historical dollars 

BR Building rent 

ERR Building rental rate (2 digit industry) 

MR Machinery rental 

MRR Machinery rental rate (2 digit industry) 

®all dollar denominated variables are reported as thousands of dollars. Labor 
is reported as thousands of hours. 
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Therefore, size was measured by taking an average of the total value of 

shipmentsover all years the plant was in the sample. 

Metal-Cutting Machine Tools 

Of all the variables considered, average production worker wage has the 

strongest influence on efficiency. The coefficient is both statistically and 

quantitatively significant. Since both variables are logged, the coefficient can be 

interpreted as an elasticity. For every percentage change in the average production 

worker wage rate, a .214 percent change in technical efficiency occurs. Of course, 

this does not imply causation. Simply raising wages will not increase efficiency, but 

the evidence supports the contention that plants that pay higher production worker 

wages are higher efficiency plants. 

The size of the plant, as measured by the average value of the total value of 

shipments, does influence efficiency, but the coefficient is very small. This indicates 

that the strong correlations found in the previous section were probably due to the 

factors confounding the relationship between size and efficiency. For example, larger 

plants generally pay higher wages (Dunne and Schmitz 1992). 

Plants that are part of multi unit firms are relatively less efficient. This is 

counter intuitive, given the ability of multi-unit firms to concentrate administrative 

activities in home offices, and allow plants to specialize in production. However, 

there may be other factors to consider. The MIT Commission on Industrial 

Productivity (March 1989) noted the increasing conglomerate ownership of machine 
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tool builders as a factor contributing to the decline of the industry, primarily through 

lack of reinvestment. Conglomerates used the profitable machine tool companies to 

support corporate overhead and less profitable divisions, rather than returning profits 

to the machine tool divisions for investment. Failure to invest in new equipment did 

not significantly effect the machine tool builders for a number of years, because life 

cycles of machine tools are long (March 1989). The implication is that the plants 

being operated by multi-unit firms were not being operated to maximize the future 

profits of the machine tool plant, but the profits of the firm. 

Age classes entered the model as dummy variables, as listed in table 36. 

AGEl was left out of the model so the coefficients of the other age variables should 

be interpreted relative to AGEl plants. The pattern of coefficients for the age 

variables confirms the findings from the correlations.Relative to the oldest plants, 

ages 2,3, and 5 always are more efficient. Plants in AGE5 have highest efficiency and 

plants in AGE6 were not different from AGEl plants. 

Access to manufacturing extension has a positive influence on efficiency. The 

coefficient is small, but is well within statistical significance. The implication is that 

the information circulated by the extension services aid in improving the flow of 

technological knowledge to manufacturers. While the results are weak, this was 

expected, given the blunt measure of access used here. In Chapter 7, an analysis of 

the effect of direct intervention on efficiency is performed. 

Variation of the efficiency scores is fairly well explained by the independent 

variables; the adjusted r-square statistic is .602. A hypothesis test on the distribution 
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of the residuals of the model show that the errors are normally distributed. 

Metal-Forming Machine Tools 

For industry 3542, wage and size both influence the efficiency score. The 

wage coefficient is smaller than it is for metal-cutting machine tools, but the 

coefficient for size is larger. Investment has a very small but statistically significant 

negative coefficient. This is opposite of what we would intuitively expect, but may be 

due to problems of capacity utilization for plants that overexpanded prior to the 

1982-83 recession. 

Ownership has no significant effect on efficiency. Age seems to be a less 

important factor in this industry than for metal-cutting machine tools, and, just as was 

found for the tests of mean differences, there is no district pattern of efficiency over 

age. AGE2 and AGE6 plants both are more efficient than the oldest plants. 

Metropolitan location has a positive influence on efficiency for metal-forming 

tools. No such effect was found for metal-cutting machine tools, and this niay be due 

to the relative concentration of the customers of the metal-forming tool industry. 

Their primary customers are the auto manufacturing industry. During the 1970s and 

early 1980s, before many of the foreign owned auto manufactures began operating in 

the U.S., the auto industry was concentrated around Detroit. Almost twenty percent 

of the metal-forming tools manufacturers in the U.S are located in Michigan. 

Perhaps proximity to these customers provided an efficiency advantage for those 

located in the Detroit metropolitan area. 
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The availability of manufacturing extension has a positive influence on 

efficiency. This coefficient should be interpreted with caution, in light of the findings 

regarding location. If agglomeration economies do exist in this industry, but are not 

all captured by the metro variable, then some of these efifects might be included in 

the extension variable. For the plant located in Michigan, it is impossible to separate 

the impact of the extension activities of the Michigan Industrial Technology Institute 

from agglomeration economies that might not be captured by the metro variable. 

This issue is explored further in Chapter 7. 

The fit of the model for industry 3542 was very poor. The adjusted r-square 

statistic is very small, and the model does not produce normally distributed residuals. 

Perhaps the assumptions of the OLS regression model are not valid for efficiency and 

plant characteristics in this industry. Considering these results together with those of 

the correlations and hypothesis tests, few of the plant characteristics examined can 

sufficiently explain why some plants in industry 3542 are more efficient than others. 

Efficiency, Growth, and Survival 

Plants with higher efficiency are expected to grow more quickly and will 

survive longer than plants with lower efficiency. Efficient plants are able to produce 

at lower cost, or higher quality products. In a competitive market, they will therefore 

capture an infinitely large share of the market and should be able to live longer. 

In this section, two issues are addressed. First, do plants with higher efficiency 

scores experience a greater probability of survival, and second, do plants with higher 



www.manaraa.com

183 

efficiency scores experience a higher growth rate in subsequent years? Survival is 

analyzed by applying a probit model, and growth is analyzed by correlating efficiency 

ranks and growth rate rankings. 

Efficiency and Survival 

The association between plant survival and efficiency was investigated by 

estimating the probability of plant survival as a function of technical efficiency and 

other plant specific characteristics. In order to develop a model, several decisions 

about the dependent variable had to be made. First, the year of plant death had to 

be established. Second, the time period over which death probability is defined had 

to be decided, and finally, the unit of observation had to be selected. 

Year of Death 

Data for all plants that were ever in the ASM sample were examined across 

time from 1963 to 1988 to determine the final year that the plant was observed 

operating in My manufacturing industry. The last year in which the plant appeared 

in either the ASM or census data in any industry was recorded as the plant's last 

death year. The data examined to determine the death year was not affected by 

changes in the ASM sample, since death is only recorded if a plant is never observed 

again, in either the census or the ASM samples, in any manufacturing industry. For 

plants present in the 1987 data, a death was recorded only if the plant was not 

operating in 1988 and was part of the ASM sample for 1984-1988. If the plant was 
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not part of the ASM sample for that year, there was no way to determine if the plant 

had survived past 1987. 

Time Horizon 

Choosing the time horizon over which to define the death probability posed 

several problems. The most logical choice was to measure the probability that death 

occurs in the following year as a function of the current year variables such as 

efficiency, size, wage, etc. The death counts calculated with this approach are shown 

in Table 37 under Definition 1. One flaw in this approach is that the last year of 

each ASM panel period, 1973, 1978, 1983, had to be removed from the analysis 

because the death rate would be overestimated in those years. For example, if a 

plant was in the ASM sample in 1978, but was not in the ASM panel that started in 

1979, and it did not appear in the 1982 census, then the death was associated with the 

observation for 1978, even if the plant continued to operate until 1981. 

This approach to defining death produced a very small number of death 

observations, especially when the ASM transition years were removed. This was 

primarily an artifact of turnover in the ASM sample. There were many more deaths 

than 56 for metal-cutting machine tools and many more than 41 for metal forming 

machine tools over the period. But many plants are not observed the year before 

their deaths because they had been dropped from the sample, either because they 

had switched out of the industry or because they were no longer ASM plants. With 

such a small amount of variation in the dependent variable, results from the probit 
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Number of plant deaths for two alternative definitions of death 

3541 

Deaths 

Year 
Total 
Plants Def. r Def. 2" 

1972 164 0 74 

1973 170 3 76 

1974 137 0 60 

1975 136 3 55 

1976 137 2 53 

1977 127 1 47 

1978 134 8 46 

1979 128 1 33 

1980 131 2 34 • 

1981 141 5 37 

1982 133 3 35 

1983 121 14 27 

1984 135 2 27 

1985 133 10 24 

1987 105 2 2 

Total 2032 56 143 

3542 

Deaths 
Total 
Plants Def. 1 Def. 2 

104 0 36 

107 1 33 

104 0 32 

101 1 34 

106 4 21 

88 1 21 

90 4 21 

110 0 26 

109 2 27 

102 3 22 

87 5 20 

83 13 17 

59 2 7 

60 4 5 

57 1 1 

1367 41 81 

^Number of plants not observed again in manufacturing. 

''Number of plants not observed operating at the end of the period. 
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analysis of survival became suspect. Furthermore, year dummy variables could not be 

included in the model because some years had no deaths. A dununy variable 

indicating which ASM panel the time period represented (Pan2, Pan3, Pan4) was 

included instead. 

A second approach defined death in the broadest sense possible: death 

anytime within the observed sample period. It is possible that plant failure is a 

function not only of the conditions and efficiency of the plant in the year previous to 

the closure, but also of its efficiency and conditions in previous years. The logit 

model for this approach estimates the probability that the plant survives throughout 

the sample period. 

Unit of Observation 

Provided the that the time horizon for estimation of survival probabilities was 

the entire sample period, the unit of observation had to be determined. Two 

methods were considered. In the first, the plant was the unit of observation. For 

metal-cutting machine tools, 143 of the 380 separate plants observed died before the 

end of the sample period. In metal-forming machine tools, 81 of the 251 separate 

plants died. 

Independent variables for this model ideally would be efficiency and plant 

characteristics for each year of plant operation. However, these variables are highly 

serially correlated; including each as independent variables would lead to unstable 

estimates of the parameters. Furthermore, since many plants are included in the 
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industry ASM sample for only a few years, the probit model could not include the 

lags of the plant characteristics as independent variables because there would be 

many missing values in the data. Therefore, the independent variables for the probit 

were the averages of the plant characteristics and efficiencies. 

Some adjustment of the efficiency averages to account for systematic variation 

of efficiency scores over time was desired. Without this adjustment, a plant that was 

in the sample early in metal-cutting machine tools, for example, and then dropped 

out would automatically have a lower average of efficiency scores. Average rank was 

considered, but the range of this measure would vary with the number of plants in 

the sample. The average relative rank of the plant was used instead. Average 

relative rank was constructed by dividing the plant's rank for the year by the number 

of plants in the sample in that year. This index has the same theoretical range-

between zero and one-of the efficiency score itself. These relative ranks were 

averaged across time, and this is used as the independent variable representing 

efficiency. 

Dummy variables indicating the presence of the plant in the ASM sample in 

each year were included to control for the systematic variation of the independent 

variables over time. These are not mutually exclusive variables; a plant could have a 

value of 1 for each of them; hence although all are included in the model, it is fully 

identified. 

The third probit model estimated the probability that a plant observed in a 

given year would survive through the sample period, as a function of efficiency and 
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plant characteristics for that year only. The number of deaths for each year is given 

in Table 37 under Definition 2. The table tells, for example, that 74 of the 164 plants 

observed in metal-cutting machine tools in 1972 died before the end of the sample 

period. Year dummy variables were added to the model to account for the 

truncation of the data that does not allow observation of the death of plants after the 

end of the sample period. In addition, all observations for 1987 were eliminated, 

because the opportunity to observe their death was so limited. 

The three models described above were estimated with probit analysis as 

described in Maddala (1983). Tables 38 through 40 provide results for the first, 

second, and third death definitions, respectively. Each table shows the actual 

parameter estimates and the multiplication factors for calculating marginal 

probabilities. This factor was calculated from the averages of the variables and the 

parameter estimates. In particular, the marginal probabiUties are 

^ P,. 

where <p is the p.d.f. of the standard normal. The factors listed in the tables are the 

value the p.d.f. at the average of XE, as suggested by Greene (1990). The numbers in 

parentheses under the parameter estimates are the chi-square statistics from Wald 

tests based on the observed information matrix and the parameter estimates. They 

are distributed chi-square with 1 degree of freedom. Hence the critical value at a = 

.05 is 3.84. For each model, a comparable logit analysis was estimated, and the 
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results were almost identical to the probit, with respect to both the log of the 

likelihood function and the marginal probabilities. 

Fit of the models was measured in two ways. The proportion of observations 

for which the model forecasted correctly was calculated as follows. If the predicted 

probability was greater than .5, it was counted as a predicted survival. Otherwise, it 

was counted as a predicted death. The proportion of observations for which this 

prediction was correct is listed in the table and is titled "Prop. Correct." This statistic 

doesn't have much meaning for the first set of estimations; there are so few deaths 

that if the model predicted survival universally, it would be right most of the time. 

McFadden r-square statistic is simply 1 - [log Ly^/log Lr] where is the likelihood 

function from estimation of the model with no regressors (intercept only), and Lr is 

the likelihood function for the given model (Maddala 1988). 

Results 

The most generally applicable result across each of the models is that the 

independent variables are not very good predictors of the survival of plants, especially 

for metal-forming machine tools. The plant level analysis of survival over the entire 

period (Model 2) does the best job of fitting a model to the data. Even in this case, 

however, the highest value for the McFadden r-square is .402. 

Plant-year short term analysis. This analysis modeled the probability of a 

plant surviving to the next year, as a function of the plant characteristics of that year. 

The results from this analysis are shown in Table 38. The fit of the models is very 
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Table 38. Coefficients chi-square statistics and fit statistics from probit analysis of 
the probability of survival to the next year, panel analysis 

3541 3542 

Variable Model 1 Model 2 Model 1 Model 2 

Factor* .023 .022 0.032 0.024 

Intercept 0.458 1.801* 1.681* 2.829* 
(0.389) (29.185) (9.562) (71.923) 

Efficiency 0.796 1.438 0.419 
(1.040) (3.575) (0.299) 

Average Wage -0.021 -0.026 -0.111* 
(1.865) (3.150) (13.938) 

Log of TVS 0.271* 
(10.607) 

Employment 1.015e-3* 2.458 R-3* 2.336 E-3 
(5.382) (4.572) (3.228) 

Multi -0.479* 
(4.606) 

Metro -0.135 
(0.201) 

AGE2 0.184 0.197 -0.262 
(0.194) (0.243) (0.769) 

AGE3 0.247 0.124 -0.042 
(0.599) (0.171) (0.015) 

AGE4 -0.358 -0.421 -0.474 
(1.327) (2.029) (2.692) 

AGE5 -0.540* -0.598* -0.734* 
(4.070) (5.436) (4.189) 

AGE6 -2.328* -2.261* -1.476* 
(36.720) (35.767) (9.941) 

Pan2 -0.519 -0.657* 0.252 0.140 
(2.138) (3.853) (1.399) (0.293) 

Pan3 -0.385 -0.603 -0.554* 0.544 
(0.852) (2.462) (5.088) (2.076) 

Log Likelihood -116.743 -120.798 -104.067 -91.910 

Prop. Correct 70.0 70.1 75.7 75.8 

McFadden .237 0.211 0.066 0.175 

Observations 1607 1607 1087 1087 

^Multiplication factor for marginal probabilities at the means of the independent variables. 
*significantly different from zero at a = .05 
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poor, especially for metal-forming machine tools. There is little evidence that any of 

the independent variables has much influence over the probability of survival to the 

next year. 

Efficiency approaches significance only in metal-cutting machine tools, and 

only when size is measured by the total value of shipments. The change in the 

coefficient from Model 1 to Model 2 is probably due to the strong correlation 

between shipments and efficiency found earlier. 

The average wage carries a negative coefficient that is not statistically 

significant for metal-forming machine tools. The effect of adding wage to the model 

is that employment becomes insignificant. This could be caused systematic changes 

in employment and wages over time that have not been accounted for by the panel 

dummies. Dummy variables could not be included for every year because some years 

had zero deaths, so the time effects could not be completely accounted for. 

Longitudinal analysis. This analysis predicts the survival probability of a plant 

as a function of the averages of plant characteristics over time. The results of the 

model appear in Table 39. As indicated by the McFadden r-square statistics, the fit 

for these models is much improved over the models in Tables 38. However, the fit 

for metal-forming machine tools is still very poor. 

Average efficiency over the life of the plant contributes to its chances for 

survival in metal-cutting machine tools, regardless of the efficiency measure used. No 

model produced coefficients for efficiency in metal-forming inachine tools that 

approached statistical significance. It appears that efficiency is not an important 
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Table 39. Coefficients, chi-square statistics and fit statistics from probit analysis of 
the probability of survival to end of period, cross section analysis 

3541 3542 
Variable 

Model 1 Model 2 Model 1 Model 2 

Factor* 

Intercept 

Average Rel. Rank 

Average Efficiency 

Log of Average 
Shipments 

Average Employment 

Average Wage 

Multi 

AGE2 

AGE3 

AGE4 

AGE5 

AGE6 

In72 

In73 

In74 

In75 

.316 

-.333 
(.205) 

.718* 
(4.541) 

.229* 
(4.561) 

-.078* 
(3.965) 

-.674* 
(9.875) 

-.191 
(0.429) 

-.572* 
(4.551) 

-.453 
(1.609) 

-1.207* 
(9.793) 

-2.478* 
(19.685) 

-.735* 
(7.003) 

-.273 
(0.943) 

-.741 
(3.262) 

-.390 
(0.606) 

.314 

-1.083 
(1.823) 

2.116* 
(5.617) 

0.249* 
(5.400) 

-0.109* 
(5.913) 

-.665* 
(9.480) 

-0.151 
(0.269) 

-0.610* 
(5.072) 

-0.402 
(1.260) 

-1.390* 
(11.925) 

-2.870* 
(23.683) 

-.642* 
(5.195) 

-.190 
(0.454) 

-.659 
(2.636) 

-.383 
(0.588) 

.280 

0.821* 
(5.631) 

2.159E-3 
(2.955) 

-0.075 
(3.571) 

-0.847* 
(14.857) 

-0.357 
(0.672) 

0.072 
(0.027) 

0.303 
(0.395) 

-0.309 
(0.303) 

.289 

0.195 
(0.825) 

0.090 
(0.551) 

-0.072 
(3.263) 

-.802* 
(13.293) 

-0.275 
(0.428) 

0.068 
(0.025) 

0.363 
(0.564) 

-0.213 
(0.146) 
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Table 39 (continued) 

Variable 
3541 3542 

Variable 
Model 1 Model 2 Model 1 Model 2 

In76 .645 .649 -0.081 -0.226 
(2.289) (2.330) (0.044) (0.364) 

In77 -1.188* -1.073 0.109 0.199 
(4.248) (3.771) (0.055) (0.188) 

In78 .957 .998 0.359 0.342 
(2.850) (3.376) (0.658) (0.600) 

In79 0.017 -.143 0.744 0.794 
(0.001) (0.048) (0.161) (1.881) 

InSO -.335 -.409 -1.410* -1.293 
(0.253) (0.344) (4.211) (3.696) 

InSl .438 .372 1.099* 0.948* 
(0.986) (0.703) (5.063) (4.080) 

In82 -.283 -.377 -0.416 -0.367 
(0.921) (1.628) (1.085) (0.859) 

In83 .508 .597 0.456 0.421 
(2.647) (3.495) (1.378) (1.199) 

In84 -.980 -1.106* -0.980 -1.030 
(3.240) (4.098) (1.396) (1.866) 

In85 1.170* 1.094* 1.606 1.706* 
(5.019) (4.306) (3.394) (4.652) 

Log Likelihood -50.928 -150.366 -117.299 -118.688 

Prop. Correct 80.5 80.8 76.9 74.5 

McFadden .400 .402 .257 .248 

Observations 380 380 251 251 
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Table 40. Coefficients, chi-square statistics and fit statistics from probit analysis of 
the probability of survival to end of period, plant-year long term 
analysis 

3541 3542 

Model 1 Model 2 Model 1 Model 2 

Factor .344 .330 .286 .275 

Intercept -.991* 0.583* -1.584* 0.134 
(10.587) (8.481) (13.172) (0.172) 

Average Wage -.060* -0.019 •0.108* -0.104* 
(4.428) (2.282) (28.367) (26.028) 

Log of TVS .267* 0.332* 
(60.031) (40.697) 

Total Empl. 1.455 E-3* 0.002* 
(100.008) (36.380) 

Efficiency .353 .655* 0.451 1.112* 
(1.126) (3.957) (1.244) (8.024) 

Investment 1.219 E-4* 4.762 E-4* 3.536 E-4* 
(8.629) (8.199) (3.864) 

Multi -.889* -.816* -0.799* -0.761* 
(106.606) (102.114) (61.927) (60.221) 

Metro -.512* -.426* 
(21.390) (17.198) 

Ext. .159 0.179 0.515* 0.546* 
(2.805) (3.474) (16.550) (18.691) 

AGE2 .084 0.136 -0.122 -0.074 
(0.438) (1.154) (1.015) (0.373) 

AGE3 -.418* -.386* -0.074 0.028 
(16.981) (14.606) (0.311) (0.048) 

AGE4 .060 -.004 -0.308* -0.323* 
(0.140) (0.001) (4.823) (5.375) 

AGE5 -.536* -.459* 0.072 0.055 
(10.956) (7.827) (0.083) (0.049) 

AGE6 -2.909* -3.086* -1.474* -1.421* 
(34.079) (35.369) (14.337) (13.516) 

t73 -0.052 -.023 -0.075 -0.082 
(0.127) (0.025) (0.152) (0.194) 

t74 0.105 -.038 0.060 0.014 
(0.464) (0.058) (0.096) (0.541) 
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Table 40 (continued) 

3541 3542 

Model 1 Model 2 Model 1 Model 2 

t75 -.030 0.057 0.102 0.237 
(0.036) (0.131) (0.267) (1.436) 

t76 0.081 0.188 0.254 0.429* 
(0.264) (1.412) (1.634) (4.652) 

tn 0.152 0.272 0.487* 0.713* 
(0.867) (2.744) (4.967) (10.767) 

t78 0.161 0.324* 0.478* 0.764* 
(0.964) (3.926) (4.555) (11.817) 

t79 0.113 0.214 0.334 0.557* 
(0.296) (1.063) (2.520) (7.013) 

t80 0.150 0.283 0.391 0.636* 
(0.542) (1.942) (3.289) (8.722) 

t81 0.188 0.351 0.529 0.844* 
(0.866) - (3.082) (0.230) (13.346) 

t82 0.310 0.458* 0.632 0.978* 
(2.381) (5.358) (0.251) (14.870) 

t83 0.668* 0.801* 0.992* 1.342* 
(9.892) (14.782) (13.450) (24.155) 

t84 0.686* 0.796* 1.340* 1.695* 
(8.897) (12.439) (16.695) (26.280) 

t85 0.863* 0.976* 1.504* 1.886* 
(13.056) (17.306) (16.695) (26.301) 

Log Likelihood -1008.981 -989.156 -626.843 -623.047 

Prop. Correct 73.1 73.1 78.4 78.0 

McFadden R" .171 .187 .161 .166 

^Multiplication factor for marginal probabilities, taken at the means of the vector of independent 
variables. 

*Significant at a = .05. 
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factor in the survival of a plant producing metal-forming tools. This might be 

explained by industry structure that tolerates inefficiency through industrial 

relationships. 

The size effect is strong in metal-cutting machine tools, but not significant in 

metal-forming machine tools. This might be interpreted as evidence that small plants 

are more likely to survive in the metal-forming tool industry that the metal-cutting 

tool industry. The fact that the average metal-forming tool plant is smaller than the 

average metal-cutting plant lends support to this observation. 

Average wage is negative and significant in metal-cutting machine tools, and 

the effect approaches significance in metal-forming machine tools. When efficiency 

effects are controlled for, plants with higher wages are less likely to survive. 

Plant-year analysis. This analysis differs from the previous two analyses 

because, although there is an observation for every plant year, as in the panel 

analysis, a death is recorded if the plant dies by 1987, as in the longitudinal analysis. 

Thus, several observations on a single plant can be associated with a death, and only 

cross sectional differences, not time series differences, are captured by the model. 

These results are similar to those of the first analysis. For both industries, 

efficiency is only significant when the size is measured by employment rather than 

output. High wages detract from efficiency probability, confirming this result from 

both of the previous analyses. The significance of the investment coefficient can be 

interpreted either as showing that investment increases the probability of survival, or 

that plants managers anticipating a short time horizon have no incentive to invest. 
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Summary: Efficiency and Survival 

Several observations are common to each analysis of plant survival. The 

probability of survival is most consistently predicted by size, wage, and ownership. 

These observations are robust with respect to the model specification, but not the 

industry. While metal-cutting machine tools showed average shipments, average 

wage, multi-versus single unit ownership, and efficiency and age to be important 

variables in determining survival, only singed versus multi unit ownership had a 

consistent impact on survival in metal-forming machine tools. The longitudinal 

analysis explained the greatest amount of variation in the dependent variable for both 

industries. The longitudinal analysis also provided the strongest evidence that 

efficiency contributes to plant survival. 

Some evidence was found to support the hypothesis that access to industrial 

extension increases the probability of survival for metal-forming machine tools. This 

result is not robust with respect to model specification. 

Efficiency and Growth 

We suspect that a plant with higher efficiency will be able to capture a larger 

market share, since its relative efficiency implies either that it can produce products 

of comparable quality at lower cost than other plants, or that it is able to produce a 

higher quaUty output with a given vector of inputs. In order to investigate the impact 

of efficiency on the output growth of a plant, the one year growth rate in the total 

value of shipments was ranked by year for each plant. This ranking was correlated 
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Table 41. Pearson correlations coefficients between the rank of the growth rate of 
the total value of shipments and efficiency rank 

Efficiency Rank Lag 3541 3542 

year t 0.1100* 0.1417* 
(.0001) (.0001) 

1573 1075 

year t-1 0.0601* 0.0581* year t-1 
(.0214) (.0631) 

1465 1024 

year t-2 0.0904* 0.0957* year t-2 
(.0019) (.0065) 

1176 807 

year t-3 0.0688* .1333* 
(.0304) (.0006) 

990 661 

year t-4 0.0471 .2089* 
• (.2137) (.0001) 

699 444 

year t-5 0.0676 0.1845* year t-5 
(.0860) (.0002) 

647 406 

year t-6 0.0321 .1838* 
(.4869) (.0018) 

471 286 

year t-7 0.0474 .1314* 
(.3007) (.0261) 

478 287 

year t-8 0.0561 .1779* 
(0.2459) (.0052) 

429 245 

year t-9 0.0698 .1733* 
(.1847) (.0141) 

363 200 
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with the plant's efficiency ranking for year t, t-1,... t-9. The results of this correlation 

are shown in Table 41. The numbers in parentheses are the probability of observing 

the estimated value of the correlation coefficient under the hypothesis that the 

correlation is equal to zero. The bottom figures indicate the number of observations 

on which the correlations are based. Since the growth rate calculation requires that a 

plant be present in the sample for two consecutive years, the number of observations 

for the concurrent rank correlations is smaller than the total number of observations. 

The rank of output growth is positively related to present and lagged values of 

efficiency growth for both industries. In metal-cutting machine tools, the significance 

of the correlations only lasts for four years. After four years, the advantage of higher 

efficiency wears off if it is not maintained. For metal-forming machine tools, the 

correlations are significant and positive for the concurrent efficiency rank, and for all 

efficiency ranks lagged for nine years. 

Apparently, the advantage of higher efficiency lingers for a longer period of 

time in metal-forming machine tools. This may be due to longer life cycles for the 

products of this industry. In 1983, 37 percent of the metal-forming machine tool in 

use by manufacturers in the U.S. were at least 20 years old. By contrast, the 

percentage of metal-cutting tools that was 20 years or older was 32 percent (March 

1989). The distribution of the age of tools is generally skewed toward longer lives for 

metal-cutting tools. Manufacturers tend to replace metal-cutting tools less frequently, 

so they have an opportunity to change their perception 

of the machine tool builder less often. With no new experience on which to base an 
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opinion, customers might return to the same tool builder that was efficient eight or 

ten years ago. 

Expansion of market share through efficiency improvement is a long term 

strategy that requires investment in process and product development. The failure of 

American manufacturers to consider a long term perspective is often cited as a cause 

of slipping American industrial competitiveness (Dertouzos 1989). The MIT 

Commission on Industrial Productivity discovered a number of practices common to 

German and Japanese machine tool builders that reflect a long term perspective, 

such as taking low profit jobs to take advantage of "learning by doing." It is clear that 

efficiency pays off in the long mn with larger market share. Encouraging American 

machine tool builders to consider the long term might be important to assuring the 

survival of the industry, 

Summaiy 

In this chapter, three features of the relationship between efficiency and plant 

characteristics were investigated. In the first section, it was established that plant 

size, age, and average production worker wage are important determinants of 

technical efficiency. Metropolitan location is an important (positive) influence on 

efficiency for metal-forming machine tools, and ownership by a multi-unit firm is an 

important (negative) influence in on efficiency metal-cutting machine tools. The 

existence of a manufacturing extension program also positively influences efficiency in 

both industries. 
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In the second section, it was discovered that large plants, plants with relatively 

low wages, plants owned by firms owning only 1 plant are more likely to survive. 

Efficiency contributed to survival for metal-cutting machine tools, but this result was 

not robust with respect to model specification. Industrial extension improves the 

probability of survival by one definition of death, but only for metal-forming machine 

tools. This result was not robust with respect to the definition of death that was 

employed. 

Finally, among surviving plants, those with relatively high efficiency scores had 

higher output growth rates than those with lower relative efficiency scores. Efficiency 

increases future market share. 

These results suggest policy actions for improving efficiency and survival in the 

machine tool industry: 

1. Improving market share and encouraging cooperation among builders in 

order to capture size advantages; 

2. Enrich worker skills to improve efficiency, and encouraging young more 

engineers to focus on the problems of manufacturing; 

3. Encourage communication between customers and suppUers in order to 

create agglomeration economies even for remotely located plants; 

4. Promote a more direct relationship between ownership and 

management so that the-long term interests machine tool business are 

not removed from the decisionmaking of the firm; 

5. Advocate manufacturing extension programs to the industry as a vehicle 



www.manaraa.com

202 

for improving plant efficiency, especially when builders are considering 

investment in new plant and machinery, to shorten the time of 

adjustment to new technologies. 



www.manaraa.com

203 

CHAPTER?. EMPIRICAL RESULTS III 

Several empirical questions regarding the relationship between plant 

characteristics and technical efficiency have been raised but only marginally 

addressed. Technical efficiency scores that were developed and discussed in Chapters 

5 and 6 measure the efficiency of a plant relative to the estimated best practice 

frontier. Plots of the frontiers showed that over time, the frontiers did not always 

shift inward, indicating technical advance; in fact, it appeared that technological 

regression occurred over time. The first section of this chapter takes a more precise 

approach to measurement of shifts in the frontier technology. Malmquist indexes of 

productivity change are constructed, and decomposed into technical change (shift is 

the frontier) and efficiency improvement (movement toward the frontier). 

The analyses presented in Chapter 6 shed light on the factors that advance 

efficiency. One of the theoretically most important factors contributing to technical 

efficiency is the adoption of new technology. While variables such as investment, age, 

and wage rates suggested the role of new technology in efficiency determination, no 

direct measure of technology adoption was available on the LRD dataset to test the 

relationship. In the second section of this chapter, data from the 1988 Survey of 

Manufacturing technology are merged with the LRD data to examine the impact of 

technology adoption on technical efficiency. 

The availabiUty of industrial extension services in the state in which a plant is 

located is associated with improved efficiency. However, this variable was a poor 
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proxy for actual intervention of the program in the manufacturing activities of plants. 

In the final section of this chapter, data on cUents of the manufacturing extension 

services of Iowa, Michigan, and North Carolina are examined to develop more 

information about the relationship between extension service and efficiency. 

Technical Efficiency and Technological Change 

Technical efficiency scores indicate the efficiency of a plant relative to the 

relevant best practice frontier. These scores give no indication of the placement of 

the frontier, and changes in technical efficiency could be the result of a combination 

of shifts in the frontier (when it is allowed to do so) and efficiency improvement in a 

real, rather than relative sense. An application of the Malmquist index of 

productivity change, first developed by Caves, Christensen and Diewert (1982) 

decomposes changes in the technical efficiency score for a group of plants across 

years into shifts in the best practice production function and improvements in the real 

efficiency of plants. In this section, the methodology for constructing Malmquist 

indexes from Farrell efficiency measured is reviewed, and an application to stochastic 

frontiers is developed. The methodology is applied to the machine tool industry, and 

explanations for the results are perused. 

Malmquist Indexes of Productivity 

Following the notation introduced in Chapter 2, the Farrell measure of 

technical efficiency is 
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F.{u,x) = min{A:A,x e L{u)). (7.1) 

Fare, Grosskopf, Lindgren and Roos (1992) have defined a Malmquist input based 

productivity measurement using the Farrell efficiency concept. Consider two input 

correspondences, L'(u') and L'^^(u''^^). Then define: 

Fi(u\x*) = min{A:Ajc' e LXu^), (7.2) 

e LXu'*% (7.3) 

f I*^(u ',x^ = minUrXx' e L'*\u% (7.4) 

f I"\u '*\x '*^) = minikiXx'*^ e !'+'(«'+% (7 5) 

In Figure 26, (which assumes u' = u'"*"^), equation 7.2 is represented by oe/od; 

equation 7.3 is oc/ob; equation 7.4 is of/od and equation 7.5 is to oa/ob. Equation 

7.2 and 7.5 are the traditional Farrell efficiency measures for periods t and t+1, 

respectively. Equation 7.3 compares period t technology to the input and output 

vector used in period t+1; Equation 7.4 compares period t +1 technology to the input 

and output vectors used in period t. 

Fare, et al. (1992) define the Malmquist input based productivity measure as: 

FiXu'^") _ (76) 

The index can be decomposed into changes in efficiency and movements of the 

frontier: 
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The first term in equation 7.7 is the ratio of efficiency in year t to efficiency in year 

t+1; the term in brackets is a measure of technical change composed by taking the 

geometric average of the ratio of the shifts in the frontier at u^^^ and u'. 

Improvements in productivity occur when M''^Ms less than one. The individual 

components have a similar interpretation: if a ratio is less than unity its change is a 

source of productivity improvement. 

. (7.7) 

Figure 26. The Malmquist input based productivity index 
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To apply the Malmquist input based productivity index to stochastic frontiers, 

consider a simple stochastic frontier model with Cobb Douglas technology: 

^ (7.8) 
= «r+E + Vg - «g 

/=l 

where i indexes the plant, t indexes time, and N represents the number of inputs in 

the production function, visa normally distributed disturbance with mean 0 and 

variance cr^, and u is distributed truncated normal with mean /x and variance The 

Farrell efficiency term is the exponential of -u. Therefore, it can be expressed as 

M 

where A is the exponential of a and V is the exponential of v. Similarly, for period 

t+1, 

. (7,10) 

M 

Application of the Malmquist index is straightforward, except for the presence of V. 

The Fare, et. al. application involved no error term, i.e. the frontier was 

deterministic. The problem specific to this application is which error term to 

associate with each of the four derivations of the efficiency term that compose the 

Malmquist index. In equation 7.8, the disturbance from period t clearly goes along 

with the efficiency score from period t. The same is true for the efficiency score for 
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period t+1. However, which error term to include in the denominator is less clear 

for equations 7.3 and 7.4. Should equation 7.3 include the random disturbance from 

t, which is the period over which the technology is defined, or from period t+1, which 

is the period from which inputs and outputs are taken? 

Assume that the disturbance term represents random events in a given time 

period that affect productivity, i.e. weather, strikes, machinery breakdown, etc. Then 

it seems logical to assign the disturbance term to the same time period as the vector 

of inputs and outputs. For case 2 the appropriate question is, "given the inputs, 

outputs, and random events occurring in period t+1, how does production compare 

to the frontier from period t?" Similarly, for case 3, the question is "given the inputs, 

outputs, and random events occurring in period t, how does production compare to 

the frontier from period t+1?" This approach assumes that with no random variation 

in the factors of production, technology is essentially a deterministic engineering 

relationship. If all factors of production could be measured perfectly, then a given 

vector of inputs would always produce the predicted value of output. 

The alternative approach is to associate the error term with the technology 

itself, rather than the input vector. The assumption in this case is that the production 

function is not deterministic, but a stochastic relationship due to uncertainty about 

the technology, rather than the inputs. 

For this application, assumption one is adopted. Equations 7.3 and 7.4 are 

calculated as follows: 
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A 
(7.11) 

and 

Frcg '^ ' )  = 
(7.12) 

;=i 

The Mahnquist index can be calculated directly from each component in equations 

12 through 7.5, and technical change can be backed out using equation 7.6. 

The Malmquist index, efficiency ratio, and technical change were calculated 

for each plant, using the last year of each time period for which a production function 

was calculated as reference years. For industry 3541, the Malmquist decomposition 

was performed for 1978 compared to 1983 and 1983 compared to 1987. For industry 

3542, the Malmquist decomposition was calculated for 1973 compared to 1978, 1978 

compared to 1983 and 1983 compared to 1987. Averages weighted by the average of 

the total value of shipments were calculated to provide an industry average that 

weights plants with a larger value of output more heavily in the development of the 

index. Note that the index can only be calculated for plants that were observed in 

both of the reference years. The results are presented in Table 42. 

For metal-cutting machine tools, the Malmquist index indicates a total factor 

Results 
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productivily decline from the first to the second production function, but a shght 

improvement in productivity from the second to the final period. A similar trend is 

observed for metal-forming machine tools: productivity decline until 1983, and then a 

slight improvement for the final period. These results partially agree with the simple 

total factor productivity calculations made with the LRD data and presented in 

Tables 8 and 9. The only discrepancy is that the TFP in Table 8 does not improve in 

the final period for industry 3541. 

The decomposition of the Malmquist index into its components reveals two 

interesting results. First, the frontier technology appears to have regressed over the 

entire period for industry 3541 and from 1978 to 1987 for industry 3542. This result 

confirms the casual observations regarding production function shifts gleaned from 

plots of the frontier technology in Figures 10 through 16. 

The second interesting result from Table 42 is that while both industries have 

suffered declines in productivity over the sample period, the decomposition into 

technical change and efficiency improvement is quite different. Metalcutting 

machinetool builders have made greater gains in efficiency over time relative to their 

best practice frontier than have the metal-forming tool manufacturers. This was 

illustrated in Figures 9 through 11 by the decreasing space between the frontier and 

average practice technologies. For metal-forming machine tools, the decomposition is 

more evenly divided between technological change and efficiency improvement (or 

deterioration). 
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Table 42. Decomposition of the Malmquist index for the machine tool industry, 
averages weighted by the average of the total value of shipments 

• 3541 3542 

Mahnquist Efficiency Tech, 
Year TFP Ratio Change 

N Malmquist Efficiency 
TFP Ratio 

Tech. 
Change 

N 

Indexes calculated using the last year of the production period 

1973/ 
1978 

1.182 1.376 0.862 59 

1978/ 1.267 
1983 

0.624 2.037 61 1.269 1.092 1.165 40 

1983/ 0.969 
1987 

0.804 1.205 58 0.892 0.838 1.064 29 

Indexes calculated using the first year of the panel sample 

1972/ 
1974 

0.961 1.107 0.870 77 

1974/ 1.045 
1979 

0.528 1.982 63 1.129 1.019 1.109 46 

1979/ 1.275 
1984 

1.073 1.189 62 1.054 0.975 1.079 29 

Unweighted indexes 

1973/ 
1978 

1.225 1.336 0.920 59 

1978/ 1.296 
1983 

.624 2.080 61 1.269 1.092 1.165 40 

1983/ .986 
1987 

.828 1.191 58 0.862 0.808 1.067 29 
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The decomposition is important to the understanding of the forces underlying 

changes in total factor productivity. Despite the appearance of efficiency 

improvement in industry 3541, this is not due to movement of plants toward the 

frontier, but of shifts in the technology toward the plants. In industry 3542 from 1973 

to 1978, the efficiency worsened, but this was due partly to the shift backward of the 

best practice technology. The plants were chasing a moving target. 

The observed regression in the frontier technologies seems implausible: 

certainly, the state of knowledge in the industry, which is what the frontier 

theoretically represents, cannot get worse. While this is not an unprecedented result-

- Fare et al (1992) also find technological regress for Swedish pharmacies between 

1980 and 1981, 1982 and 1983, and 1983 and 1984—it is disturbing because of it is 

counterintuitive. 

There are two categories of possible explanations for what is observed about 

technical change. The first is statistical. That is, what we observe may be an artifact 

of the base years, the weighing scheme, or how inputs are measured. The second 

category is a set of real forces that might be observed in the machine tool industry. 

For example, plants defining the frontier in earlier years are either losing productivity 

or are leaving the industry. 

Reference Years 

The most immediate possibility for explaining the strange result with respect to 

the frontier is that it is an artifact of the reference years chosen. In order to check 
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for robustness with respect to which years were chosen, the indexes were recalculated 

using different reference years. The first year in a panel sample was chosen for the 

reference year. The results, listed in Table 42, show that although there are some 

fairly substantial changes with respect to the relative efficiency scores and TFP 

measures, the technical change component is fairly constant. Furthermore, the 

variance of the technical change measure is fairly small; an examination of individual 

observations revealed oniy small variations about the mean. 

Weighting 

The Malmquist indexes were checked for robustness with respect to the 

weights chosen for the averages. The indexes were recalculated without weighting 

them, so that each plant contributed equally to the index. The results still indicate a 

regression of the frontier. Thus, the index decomposition did not differ drastically for 

small and large plants. 

Finally, the Malmquist productivity indexes were checked against a published 

and widely used industry level total factor productivity measure developed by Wayne 

Gray (1989). The Gray industry level TFP, listed in Table 43, coincides roughly with 

the Malmquist TFP averages in Table 42. In industry 3541, increases and declines in 

TFP were small until 1982 and 1983. Declines in TFP of 13 and 21 percent in those 

two years dispel any concerns that technological regression in the machine tool 

industry might be an artifact of the estimation method or the data. 
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Table 43. Industry changes in total factor productivity by year 

Year 3541 3542 

1973 0.040 0.048 

1974 0.021 -0.018 

1975 -0.138 -0.076 

1976 -0.173 -0.011 

1977 -0.019 -0.044 

1978 0.021 -0.017 

1979 -0.009 -0.024 

1980 -0.015 -0.057 

1981 0.014 -0.076 

1982 -0.131 -0.060 

1983 -0.210 -0.046 

1984 0.019 0.047 

1985 -0.025 -0.008 

1986 0.009 -0.013 

1987 

Source: Gray, 1989. 

Capital Input Definition 

A common assumption in productivity measurement is that the flow of capital 

services is proportional to the capital stock. This assumption underlies the study 

conducted by Fare, Grosskopf, Lindgren, and Roos (1992) for Swedish Pharmacies, 

as well as the Gray total factor productivity indexes. When the actual machine hours 

or capacity utihzation of the capital stock is not taken into account in the capital 

input measurement, productivity will fall in periods in which the utilization rate is 
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low. If this occurs for all plants in the industry, including those defining the frontier, 

then the frontier shifts backward. In this case, it is not the best practice knowledge 

that has regressed, but the best practice practice. The fixed nature of the capital 

stock is driving the backward shift in the frontier. 

Investigating this possibility, consider the serious slump that occurred in 

machine tool production from 1981 to 1984. During this time, output fell 

dramatically, while the capital stock continued to rise, as plants received previously 

ordered equipment. Decline in the capital stock caught up with declines in output 

only as older equipment was retired and new equipment was not ordered to replace 

it. The result was a drastic decline in the output per unit of capital ratio, as shown in 

Tables 8 and 9. The most dramatic regression of the frontier for both industries was 

between 1978 and 1983. Table 44 shows that capacity utilization in the machine tool 

industry reached a trough in 1982 and 1983 in both the metal-forming and metal-

cutting industries. 

One other possible reason for regression of the best practice technology for 

machine tool manufacturers is that the plants defining the frontier in early samples 

exited the industry before the new frontier was constructed. In Chapter 5 it was 

established that high efficiency plants are not more likely to close down than low 

efficiency plants, but the possibility of exit to other industries has not been explored. 

In order to check this possibility, plants that shift industries would be identified, and 

their efficiency scores compared to plants that remain in the industry. If plants that 

define the frontier leave the industry, then the next-most-efficient plant defines the 
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Table 44. Capacity utilization rates in the machine tool industry, fourth quarters 

3541 3542 
Year 

Preferred Rate® Practical Rate*' Preferred Rate Practical Rate 

1973 (sy (S) (S) (S) 

1974 66 65 83 66 

1975 75 72 82 74 

1976 72 66 80 71 

1977 71 67 84 72 

1978 78 70 83 75 

1979 77 70 77 72 

1980 76 70 90 75 

1981 70 66 78 66 

1982 44 41 51 45 

1983 49 46 45 38 

1984 48 43 79 71 

1985 53 46 84 69 

1986 46 42 73 61 

1987 54 50 90 90 

Preferred rate is ratio of actual operations to preferred level of operations. 

''Practical rate is ratio of actual operations to practical capacity. 

•^(s) indicates that the estimate has been withheld because it did not meet 
publication standards. 

Source: U.S. Department of Commerce, Bureau of the Census, Survey of Plant 
Capacity, 1978, 1982, 1988. 
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frontier, causing technology regression. 

Summary 

In Chapter 5, examination of plots of the frontier technology showed visually 

that the best practice frontier had regressed over time in both industries. In this 

section, this issue was investigated more precisely with Malmquist indexes of 

productivity change. Results show that the frontier technology for industry 3541 

shifted out, away from the origin, and that improvements in efficiency were mainly 

technological regression, but the Malmquist decomposition was much more evenly 

weighted between efficiency changes and shifts of the frontier in industry 3542. It is 

likely that regression in the frontier is caused mainly by problems of capacity 

utilization. 

Technology Adoption and Technical Efficiency 

The results presented in Chapter 6 indicated that efficiency in the machine 

tool industry was associated with a number of plant characteristics. However, the 

differences in efficiency have not been completely explained, particularly for industry 

3542. Furthermore, unobserved differences in technology have been cited as a 

possible reason for the dissimilarities between the metal-cutting tool industry and the 

metal-forming tool industry. In this section, data from the 1988 Survey of 

Manufacturing Technology (SMT) are merged with the LRD to address these issues. 

Information from the SMT regarding the type of technologies used in machine tool 
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industries are presented. Farrell efficiency measures are estimated for this much 

smaller data set using linear programming techniques, and the resulting efficiency 

scores are correlated with a simple measure of the level of technology in the plant. 

Survey of Manufacturing Technology 

The 1988 Survey of Manufacturing Technology contains information on the 

extent of advanced-technology usage at a large number of U.S. manufacturing plants. 

The sampling frame for the SMT was manufacturing plants with 20 or more 

employees and in two-digit manufacturing industries 34 through 38. The industries 

covered in the sample are Fabricated Metal Products (34), Nonelectrical Machinery 

(35), Electric and Electronic Equipment (36), Transportation Equipment (37) and 

Instruments and Related Products (38). The survey consisted of questions about the 

plant's usage of seventeen advanced technologies, from five major technology groups 

during the year 1987, as well as a few other variables identifying plant characteristics. 

The seventeen technologies are listed and described in Table 45. These technologies 

represent relatively new innovations that have general use across a wide range of 

industries. A more detailed description of the SMT data is provided by Dunne 

(1991). 

The SMT collected technology data for 9,682 establishments, from a total 

census universe of 39,556. The universe frame was stratified on the basis of three 

digit SIC code and size of total employment, with the three size classes being 20 to 

99, 100 to 499 and greater than 500 employees. Simple random sampling was 
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Table 45. Description of technologies covered by the survey of 
Manufacturing Technology 

Technology Description 

Computer Aided Design Use of computers for drawing and designing parts 
Engineering or products and for analysis and testing of designed parts 

or products 

CAD controlled machines Use of CAD output for controlling machines used to 
manufacture the part or product 

Digital CAD 

Flexible Manufacturing 
Systems/Cell 

Numerically/Computer 
Controlled Machines 

Use of digital representation of CAD output for 
controlling machines used to manufacture the part or 
product 

Two or more machines with automated material handling 
capabilities controlled by computers or programmable 
controllers, capable of single path acceptance of raw 
materials and delivery of finished product. 

NC machines are controlled by numerical commands 
punched on paper or plastic mylar tape while CNC 
Machines are controlled throughout an internal computer 

Materials Working Lasers Laser technology used for welding, cutting, treating, 
scribing, and marking. 

Robot 

Pick/Place Robot 

Automatic Storage 
Retrieval Systems 

A reprogrammable, multifunctioned manipulator designed 
to move materials, parts, tools, or specialized devices 
through variable programmed motions. 

A simple robot with 1-3 degrees of freedom, which 
transfers items from place to place. 

Computer controlled equipment providing for automatic 
handling and storage of materials, parts, and finished 
products. 
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Technology Description 

Automatic Guided 
Vehicle Systems 

Technical Data Network 

Factory Network 

Vehicles equipped with automatic guidance devices 
programmed to follow a path that interfaces with work 
stations for automated or manual loading of materials, 
parts, tools, or products. 

Use of Local Area Network (LAN) technology to 
exchange technical data within design and engineering 
departments. 

Use of LAN technology to exchange information between 
different points on the factory floor. 

Programmable Controller A solid state industrial control device that has 
programmable memory for storage of instructions, which 
performs functions equivalent to a relay panel or wired 
sold state logic control system. 

Computers Used for 
Control on the 
Factory Floor 

Automatic Sensors used 
on inputs 

Automatic Sensors used 
on Final Products 

Excludes computers imbedded in machines, or computers 
used solely for data acquisitions and monitoring. Include 
computers that may be dedicated to control, but which 
are capable of being reprogrammed for other functions. 

Automated equipment used to perform tests and 
inspections on incoming or in process materials 

Automated equioment used to perform tests and 
inspections on Final Products 

Source: U.S. Department of Commerce, Bureau of the Census, Current 
Industrial Reports, Manufacturing Technology 1988. 
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performed with each strata, and weights were assigned to each plant; the weights 

were the inverse of the sampling fractions for the strata. The purpose of the 

weighting scheme was to estimate cell counts within each size and industry class (U.S. 

Department of Commerce 1989). 

For each of the seventeen technologies, plants indicated whether or not that 

technology was in use in the plant. No information was collected regarding the 

degree to which a technology was used in the plant. The lack of usage intensity data 

is a weakness that places plants using the technologies throughout their operations 

insame category as plants using the technology in a very limited sense. Nonetheless, 

the SMT is a valuable survey because it provides direct measures of technology use at 

a highly desegregated level and for a very large number of manufacturing plants. 

Table 46 provides information on the usage of each advanced technology in 

each of the five major industry groups, and for the machine tool industry (industries 

3541 and 3542). The percentages are weighted using the SMT weights. The most 

commonly used technologies include computer aided design, numerically 

controlled/computer numerically controlled (NC/CNC) machines, and computerized 

communications and control. Relative to other industries, machine tool plants are 

heavy users of computers on the factory floor. Computer aided design and 

manufacturing, computers used for communication and control, and NC/CNC 

machine tools is also fairly common among them. However, they make little use of 

other flexible machining or assembling technologies or automated materials handUng, 

and make only modest use of automated sensor based inspection. 
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Table 46. Percent of establishments using technology 

Technology 34 35 36 37 38 
Machine 

Tools 

Design & Engineering 

Computer Aided Design 26.8 43.2 48.5 39.9 48.9 4.01 

CAD Controlled 
Machines 

13.1 21.6 16.0 16.6 14.6 17.0 

Digital CAD 6.5 11.0 12.8 10.0 12.5 28.1 

Flexible Machining and Assembly 

Flexible Mfg Systems 9.0 11.0 11.9 12.6 10.8 5.5 

NC/CNC Machines 32.2 56.7 34.9 37.3 33.6 35.1 

Lasers 2.9 3.6 7.5 6.0 4.3 4.8 

Pick/Place Robots 5.7 5.8 13.1 10.4 8.6 9.5 

Other Robots 4.4 5.2 6.9 10.5 4.4 0.6 

Automated Material Handling 

Automatic Storage 
/Retrieval Systems 

1.0 3.6 4.9 4.7 4.2 4.2 

Guided Vehicle Systems 0.8 1.7 1.8 3.3 1.3 0 

Automated Sensor Based Inspection 

Materials Sensors 6.7 8.5 16.2 12.7 12.2 8.2 

Output Sensors 8.3 9.9 22.2 14.4 15.4 12.6 

Communication and Control 

LAN for tech data 13.4 18.5 24.9 22.0 25.8 21.9 

Factory LAN 11.6 16.3 21.1 18.7 21.3 21.9 

Intercompany Computer 
Network 

14.9 12.4 16.2 21.7 13.8 4.8 

Programmable Controllers 26.8 33.9 38.0 32.0 32.7 24.7 

Computers Used on 
Factory Floor 

21.1 28.1 34.5 27.4 32.3 36.2 

Number of Establishments 12,746 13,176 7,293 3,425 2,916 305 
(weighted) 

Source: U.S. Department of Commerce, Bureau of the Census, Current 
Industrial Reports, Manufacturing Technology 1988, and author's calculations. 
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Following Dunne and Schmitz (1991) a measure of advanced technology usage 

is constructed from the responses to the seventeen questions on the SMT on 

individual technology use. The number of technologies used in a plant is summed, 

and a plant using a greater number of technologies is considered more advanced-

technology intensive. In Table 47, the plants are partitioned into four groups: those 

using none of the advanced technologies; those using 1 or 2 of the advanced 

technologies; those using three to five of the advanced technologies; and those using 

six or more. The presented percentages are weighted using the SMT weights. 

Both of the machine tool industries have a larger percentage of plants with 

two or fewer technologies in use than the average for all industries surveyed. Metal-

cutting machine tool plants apply a larger number of advanced technologies than 

metal-forming machine tool plants. This could explain some of the results found 

earlier regarding the importance of wages and plant age for efficiency. Within both 

industries, there is a great deal of variation among plants with respect to the number 

of technologies employed. We might find that this variation explains in part 

differences in efficiency between plants. 

Efficiency and Technology Use 

Only 43 plants (215 weighted) from industries 3541 and 19 plants (90 

weighted) from industry 3542 were included in the Survey of Manufacturing 

technology. Since this subset of the data was so small and covered only one year, it 

was decided to reestimate technical efficiency measures for this group of plants alone. 
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Table 47. Percentage of plants using a given number of technologies 

No. of Technologies 3541 3542 Total Sample 

0 24.1 38.7 25.8 

1-2 42.2 40.0 29.0 

3-5 15.6 8.7 27.2 

6 or more 18.1 12.5 18.0 

Source: U.S. Department of Commerce, Bureau of the Census, Current 
Industrial Reports, Manufacturing Technology 1988, and author's calculations. 

Because the samples were so small, linear programming methods were employed to 

estimate Farrell efficiency measures separately for each industry (the stochastic 

frontiers were attempted, but the likelihood functions were poorly behaved because 

of the few number of observations). 

The Farrell efficiency measures were calculated with the linear program 

routine run on the SAS statistical package. The linear program constructs a 

piecewise linear representation of the technology that envelops the sample data, and 

then computes the Farrell measure for each plant by solving the program: 

F(x,u) = minU: kx 6 L(u)}. (7-14) 

Details of the linear programming problem can be found in Lovell and Schmidt 

(1988). 

The Farrell efficiency scores were correlated with the number of technologies 

used by the plant. These correlations, both weighted according to their SMT weights, 

and unweighted, are presented in Table 48. The correlations for the number of 



www.manaraa.com

225 

technologies with both efficiency and wage are statistically different from zero for 

industry 3541 only when the weights are applied. Although these weighted 

correlations provide evidence that technical efficiency is promoted by the adoption of 

advanced technologies, this result hinges on the suitibilty of these weights for this 

purpose. 

The assumption behind the weighting scheme is that plants in a given three 

digit SIC code and a given size class have similar patterns of technology adoption. 

Using these weights for the correlation with efficiency also requires the assumption 

that the similarity extends to technical efficiency as well. At best, the evidence 

associating the number of technologies used with efficiency and wage is weak. 

While the evidence linking technology to wage and efficiency is inconclusive, 

several facts were gathered from this analysis. First, machine tool builders lag a 

number of other industries in the use of advanced manufacturing technologies. 

Second, plants in industry 3542 are less technology intensive that metal-cutting 

machine tool builders. This seems to support the contention made earlier that the 

pace of technological change may be slower in the metal-forming tool industry, which 

makes plant age and wages less important determinants of technical efficiency. 

Of particular note is the virtual nonexistence of flexible manufacturing systems 

in the plants of machine tool builders. This is interesting because FMS is the most 

recently developed and flexible machining technology, and several American machine 

tool builders began selling then in the early 1980s, but not one installed them for use 

or experimentation in their own operations until years later. By contrast, virtually all 
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Table 48. Pearson correlation coefficients between the number of technologies 
and the efficiency score 

3541 3542 

Weighted Unweighted Weighted Unweighted 

Efficiency .4499 0.0932 -.5044 -.0493 
(.0025) (0.4165) (.0277) (.7887) 

Wage .3254 0.0892 -.1629 0.1396 Wage 
(.0332) (0.4356) (.5051) (0.4447) 

of Japan's significant builders had one or more FMS systems in house by the early 

1980s, and one had begun using them as early as 1972. One of the ways that the 

Japanese have broken into the high end market for machine tools is by experimenting 

with the newest technologies in their own plants (March 1989). It appears that the 

American builders have not adopted this strategy. 

Manufacturing Extension and Technical Efficiency 

Evidence was found in Chapter 6 that plants located in states with active 

industrial extension programs were more efficient. This variable was an admittedly 

poor proxy for actual intervention, but did reflect some benefits of manufacturing 

extension that might not require direct intervention. In this section, the affect of 

intervention by manufacturing extension is examined with the help of data from 

industrial extension programs in Michigan, North Carolina, and Iowa. The data are 

quite limited, and interpretation of statistical results is suspect. However, some 

information can be derived from a casual examination of the data. 
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The names, addresses, and, in some cases intervention dates were obtained for 

machine tool manufacturers that were clients of the Michigan Industrial Technology 

Institute, the Center for Industrial Research and Service at Iowa State University, and 

the Industrial Extension Service at North Carolina State University. The names and 

addresses were used to search for the plant identification number on the LRD, using 

the name and address file that is derived from survey mailings. The matching process 

is imperfect, and not all of the clients of the industrial extension services that were 

provided could be matched with the LRD. This is partially due to differences in the 

SIC codes assigned to the plant by the Census Bureau and the industrial extension 

services. The final sample included 305 plant-years in industry 3541 in Michigan, 

North Carolina, and Iowa. Of these, 39 observations were for client plants. In 

industry 3542, there were 106 total observations and 17 of these were client 

observations. The major drawback of this data was that dates of participation could 

not be determined for all of the clients. An intervention analysis is not possible. The 

analysis should not be interpreted as analyzing the effect of extension, because it is 

not always certain at what time the intervention occurred. Essentially, what can be 

accomplished is a cross section study between plants that at some time have been 

clients of the extension agency and those that have not. 

Only census data were included for the analysis because many of the plants 

identified as extension clients were not part of the ASM. Because so few 

observations were available for each industry, Farrell efficiency measures were 

calculated using the linear programming procedure employed for the analysis of 
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Results 

Table 49 shows the results of a test for differences of the means of client and 

nonclient plants. In both industries, the efficiency score for the client plants is 

significantly lower than the average score for the nonclient plants. Because an 

intervention analysis is not possible, there are two feasible explanations for this result. 

The most likely scenario is that the least efficient plants are more likely to seek out 

or attract assistance. This idea is confirmed by a study by the National Governors' 

Association that found that field agents for industrial extension services often target 

failing firms for industrial extension (Clarke and Dobson 1992). 

Several instances of intervention in the middle of a series of observations on a 

single plant was observed. In each of the three cases in which efficiency was 

observed before and after an intervention with a known date, the efficiency of the 

plant improved. However, this does not imply causality because the efficiency scores 

were estimated over four census years (1972, 1977, 1982, and 1987) and the general 

trend was an improvement in efficiency over time. 

Few conclusions can be derived from this analysis. The only concrete result is 

that industrial extension clients are generally less efficient that other plants in their 

states. A more thorough analysis of the impact of direct extension intervention will 

not be possible until more reliable data are collected and made available by the 

many industrial extension services that have started since the middle 1980s. Given 
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Table 49. Average efficiency for plants receiving direct assistance from 
manufacturing extension versus those that never have. 

3541 3542 

N Avg. EfP. N Avg. Eff. 

Clients 39 0.159 17 0.185 
(0.032) (0.058) 

Non Clients 266 0.272 29 0.326 
(0.017) (0.032) 

^Numbers in parentheses are the standard errors of the mean. 

the importance of policy evaluation in an era of tight state budgets, simple but 

complete and reliable data systems should be developed for tracking the services 

provided to extension clients, and for tracking their progress in achieving the 

objectives for which the extension service was employed. 
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CHAPTERS. SUMMARY AND CONCLUSIONS 

The perceived problem of declining industrial competitiveness in the United 

States has been approached by many researchers using a wide variety of data sources, 

estimation methods, and procedures. The machine tool industry and its declining 

competitiveness has been studied with industry aggregate data by Bally and 

Chakrabarti (1988), and with case study data by the MIT Commission on Industrial 

Productivity (March 1989). This study has employed a unique and rich plant level 

database and a promising econometric technique to generate plant level estimates of 

technical efficiency. These estimates were used to make comparisons and to draw 

tentative conclusions about the possible sources of efficiency differences among 

machine tool manufacturers. The results of the study are outlined below, and policies 

that may improve efficiency in the machine tool industry are suggested. Several 

methodological and empirical issues that arise in empirical analyses of efficiency and 

competitiveness that have not been addressed in this analysis are considered for 

future research. 

Summaiy of Empirical Results 

It was expected that the examination of efficiency in the machine tool industry 

would uncover significant evidence of technical inefficiency. The industry's decline 

over the last twenty years has raised a number of questions about the causes of this 

decline, and inefficiency has been one of the widely discussed sources. Furthermore, 
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studies of plant level total factor productivity have revealed heterogeneity among 

plants in a wide range of industries (e.g. Baily et al 1992). Since technical efficiency 

is a relative measure, industrial heterogeneity with respect to productivity and 

efficiency is associated with it. 

Ample evidence was found to verify that many machine tool plants were 

technically inefficient. The first manifestations of technical inefficiency in both 

industries were the significance of the composed error term and the skewness of the 

ordinary least squares residuals. Further evidence was provided by the estimated 

stochastic frontiers. The hypothesis that the variance of the portion of the error term 

representing technical efficiency was equal to zero was strongly rejected for both 

industries. Visual evidence was provided by comparing the best practice with average 

production functions for each industry and finding significant divergence. These 

comparisons also provided evidence of the relative average efficiencies of the two 

industries. Metal-cutting machine tools exhibited more inefficiency, implying greater 

heterogeneity among metal-cutting machine tool plants. 

The parameters of the frontier production function were unstable over time, 

indicating that best practice technology in the machine tool industry had shifted. 

Once the data were partitioned appropriately and separate frontiers estimated for 

each time period, the reason for this instability became apparent. Best practice 

technology had actually regressed over time, particularly in the metal-cutting machine 

tool industry. Although plots of the average efficiency scores by year and industry 

showed substantial progress for plants in the metal-cutting machine tool industry. 
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evidence from plots of the production function aroused suspicion that this was at least 

partially a result of the frontier shifting toward the plants, rather than the plants 

moving toward the frontier. 

A number of procedures were performed to determine the association between 

plant characteristics and technical efficiency. These results showed that efficiency is 

associated with large plants, plants that pay high wages, and plants that reside in 

states with industrial extension programs. The advantage of size is not surprising, 

since larger plants are often are able to specialize production and non-production 

activities, hire workers with specialized skills, and cover the fixed costs of product and 

process development over a larger scale of output. Wage probably acted as a proxy 

for worker skill, but the effect of wage was not significant in metal-forming machine 

tools. This may be due to less intense use of advanced technology in this industry, 

which was one of the observations from the Survey of Manufacturing Technology. 

The positive result for industrial extension was interpreted with the proviso that the 

variable used to indicate access to extension was a poor proxy for actual intervention. 

However, the access variable does reflect improvements in the information available 

to machine tool manufacturers, even when direct intervention does not occur. 

Estimates of the probability of survival in the machine tool industry showed 

that efficiency contributed to survival probability, as did size and lower wages. The 

models' ability to predict survival was especially poor for metal forming machine 

tools. A number of variables that are not present on the LRD were conjectured to 

affect the survival of plants. These variables include worker and manager skills and 
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access to capital. While wages probably reflect worker skill to some extent, this 

relationship is imperfect and a more direct measure of skill would probably improve 

the model's ability to predict survival. 

Decomposition of the Malmquist indexes confirmed the casual observation 

that frontiers had shifted backward. The most plausible explanation for this result is 

that all plants, even the most efficient plants in the industry, suffered from low 

capacity utilization rates. In fact, failure to employ resources to their full capacity is 

most likely driving many of the results of the analysis. For example, large plants are 

probably better able to shift capital and labor to alternative uses when a particular 

segment of their business is slow. While capacity utilization was low for both 

industries, regression of the stochastic frontier was not nearly as severe in the metal 

forming machine tool industry as it was in the metal cutting machine tool industry. 

This result is driven by the homogeneity of plants in the metal forming machine tool 

industry. Changes in the efficiency of plants defining the frontier did not drastically 

alter the placement of the frontier. 

There was only weak evidence that plants employing a greater number of 

technologies were more efficient. However, patterns of technology use in the 

machine tool industry did reveal that this industry generally lagged a number of other 

industries in the adoption of advanced technologies. This is especially relevant to the 

issue of international competitiveness, since Japanese and German machine tool 

makers are competing successfully with U.S. manufacturers for markets for 

sophisticated manufacturing technologies, including flexible manufacturing systems 
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and machining centers. One strategy international machine tool manufacturers have 

used to develop this market is to experiment with these technologies on the floors of 

their own plants. 

No conclusions could be drawn about the impact of intervention by industrial 

extension on the efficiency of plants in the machine tool industry. The main result of 

this analysis was that low efficiency plants either seek the advice of the extension 

services or are targeted by the service providers. A more complete analysis of the 

effect of intervention requires substantial effort for gathering data from individual 

clients of extension services. Since many of these services have only recently become 

operational, a well conceived plan for systematically collecting this data would 

contribute a great deal to future evaluation efforts. 

Policy Recommendations 

By far, the most pressing problem facing the machine tool manufacturers in 

the Untied States is that their capital stock is not being fully employed. The only way 

to solve this problem is to recapture markets lost to the foreign machine tool 

manufacturers and to develop new international markets. International markets are 

especially important for smoothing the cyclicality of the industry without accumulating 

backlogs that force customers to other suppUers for prompt service. 

One way to build markets is to communicate more closely with potential 

customers. Users of machine tools in the U.S. have expressed dissatisfaction with the 

quality of the tools available from domestic producers. Results from this study 
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suggest that manufacturing extension might be an effective vehicle through which 

effective communication might be developed between users and suppliers. These 

strategies might include encouraging interaction between users and suppUers with 

technology workshops, maintaining directories of manufacturers and referral services, 

and dissemination of information regarding new product technology which might 

encourage customers to replace existing machine tools. 

In order for market strategies involving market failure to succeed, U.S. 

machine tool manufacturers must be willing to hsten closely and invest in 

"relationship specific capital," developing the manufacturing technology that will meet 

the specific needs of a particular user or industry. This is a strategy that entails long 

term risk, which U.S. manufacturers have often been accused of not being willing to 

face. This strategy has been used successfully by the Japanese, but their machine tool 

manufacturers were backed by the significant resources of the Ministry of 

International Trade and Industry (Mm). MITI's investment in the development of 

the Japanese machine tool industry has been substantial (March 1989). In order to 

encourage U.S. machine tool manufacturers to invest in new capital and develop new 

products, similar risk sharing arrangements might be needed. 

Aside from expansion of market share, improvement of efficiency in the 

machine tool industry might require substantial industrial restructuring. The 

recession of 1982 and 1983 and subsequent failure of the industry to recover has 

already cleared many plants from the industry. However, many small inefficient 

machine tool plants still exist and are not likely to survive among larger more 
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efficient plants. Those small plants with aggressive strategies for keeping abreast of 

new technology, developing ties with customers and other manufacturers, and 

pursuing new markets are most likely to survive. 

For the plants that continue to operate, improving worker skills is important to 

efficiency improvement strategies. Workers capable of recognizing sources of 

inefficiency in production and able to adjust the manufacturing process to correct it 

are likely to contribute a great deal to plant efficiency. This strategy must be 

combined with investments in new equipment to replace the aging industrial capital 

stock. Product development, including close cooperation with major customers, 

should be a priority. Policy to encourage these measures include tax credits for 

worker training and investment and training programs, often available through 

manufacturing extensions. 

Finally, the machine tool industry must find ways to improve performance for 

its existing customers. However, having the capacity to deliver orders quickly during 

busy times could require a capital buildup that can drag down efficiency. Achieving 

the flexibihty to manufacture alternative products, such as machine tool accessories 

and parts, might be the key to this strategy. Perhaps the machine tool manufacturers 

should consider a stronger adoption of the most flexible manufacturing technologies 

from their own industry. 

Issues for Further Research 

A number of methodological decisions taken in the analysis may have affected 
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the results and suggestions for policy intervention. Tests for robustness with respect 

to approach (parametric or nonparametric) functional form, the estimator used, and 

the data sample could be performed to confirm the results of the study. 

Capital stock data for 1986 could be constructed by interpolating between the 

data for 1985 and data for 1987. This would fill out the time series, but would 

restrict the data set to plants existing in both of these years. Filling in the missing 

data points in the time series would provide an additional reference for observing 

trends and calculating indexes. 

The analysis could be repeated for a select group of plants that are in the 

sample for the entire data period. Using a "balanced panel" may provide more 

information about the dynamics of efficiency changes within a plant over time. Some 

exploratory analysis of balanced panels for the ASM samples for 1974-1978 and 1979-

1983 were performed, and the preliminary results were similar to the original results. 

Comparing balanced and unbalanced panel results might provide a vehicle for 

comparing the efficiency of plants that stay in the industry with those who exit. More 

importantly, changes in technical efficiency in a balanced panel will reflect changes in 

efficiency for individual plants, rather than reflecting changes in the structure of the 

industry. 

The impact of poUcy intervention has been addressed only marginally. A 

worthwhile project for future research would be to set up a database system at an 

industrial extension service that would be simple to maintain and would collect the 

data relevant to the analysis of efficiency at the plant level. While there would be a 
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lag between the data was set up and the time analysis could begin, the development 

of the data system itself would contribute a great deal to prospects for future 

research. 
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